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Abstract

Analysis of hourly air temperature data from recent decades reveals trends and the degree of
variability in the length of time above and below key temperature thresholds associated with the
freezing point, heat stress, and energy usage. We examine hourly weather station data obtained from
NOAA’s Integrated Surface Database for 340 stations in the contiguous US and southern Canada
from 1978 to 2023. For each station, we compute decadal trends in hours below the freezing point
(0◦ C, 32◦ F), hours above the threshold for heat stress in animals and plants (30◦ C, 86◦ F), and
energy usage in terms of heating and cooling degree hours (weighted deviations from 18◦ C, 65◦ F).
Many locations in southern Canada and the north central and western US lack clear decadal trends
in hours below 0◦ C and have high variability in below freezing temperatures year to year. In
contrast, most locations east of the Mississippi River and north of 37◦ N have lost the equivalent of
∼1.5 to 2 weeks per year of temperatures below freezing compared to the early 1980s. The same
northeast region shows mostly insignificant trends in hours above 30◦ C. The largest gains in the
number of hours above 30◦ C are concentrated in the southwestern US and parts of Texas. For most
locations in the northern portions of the US, the rate at which heating degree hours are lost
outpaces the rate at which cooling degree hours are gained.

Trends in threshold exceedance are more easily related to lived experiences than incremental
changes to seasonal or annual averages. Our examination of hourly data complements assessments of
historical temperature changes based on daily minimum, maximum, and average temperatures.
Information on regional exceedance trends and their magnitudes can aid local climate adaption
planning.

Introduction 1

Scientific evidence overwhelmingly supports the existence of anthropogenic climate change. Studies 2

such as the Intergovernmental Panel on Climate Change (IPCC) Synthesis Report [1, 2] and the 3

Fifth National Climate Assessment [3] have extensively documented long-term changes to the 4

climate system based on historical weather observations. Often these analyses communicate trends 5

in terms of cumulative changes over time that are derived from daily values [4]. Definitions of what 6

constitutes extreme heat or extreme cold are usually based on percentiles of the long-term local 7

climatology rather than absolute values [1, 2]. The Fifth National Climate Assessment includes the 8

long-term changes in annual and seasonal average temperatures as well as the change in the number 9
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Fig 1. Hourly temperature time series for LaGuardia Airport (KLGA) in New York City from 23
July 2023 through 26 July 2023. Vertical lines are at midnight local time. The hours at or above 30◦

C for each day correspond to 2, 0, 2, and 5 hours, respectively. Starting at 2:00 PM local time on 25
July 2023, afternoon thunderstorms and the subsequent passage of a cold front yielded cooling of air
temperatures from 30◦ C to ∼22◦ C, which persisted until after sunrise the next day.

of hot days, cold days, and warm nights in the contiguous United States (CONUS) since the early 10

1900s [3]. While information based on daily metrics is useful and informative [5–10], it does not 11

capture the full story. 12

Daily statistics do not convey the instantaneous and time-integrated impacts of weather such as 13

precipitating storms, cloudiness changes, and air mass movements (e.g., fronts). A maximum 14

temperature of 30◦ C (86◦ F) recorded for 6 hours over the course of a day will have substantially 15

different impacts on people, animals, plants, and buildings compared to the same maximum 16

temperature recorded for only 1 hour of a day [11–15]. The time series of air temperatures in Fig 1 17

for LaGuardia Airport shows a drop in temperature on 25 July 2023 between 2:00 and 3:00 PM from 18

30◦ C to ∼22◦ C at the start of a rain event. In addition to precipitation, hour-by-hour timings of 19

cloudiness and air mass movements also modify hourly surface air temperatures [16]. Short-term 20

energy demands correlate strongly with hourly changes in temperature and daylight patterns [17, 18]. 21

A summer afternoon shower at 2:00 PM near the daily peak temperature (Fig 1) will have more of 22

an impact on energy usage in terms of cooling degree hours than the same storm if it had occurred 23

overnight at 9:00 PM, which is several hours after the daylight temperature peak. Trends and 24

variability of hourly temperature data in terms of heating degree hours and cooling degree hours are 25

pertinent inputs for forecasting future regional energy demand [19–21]. Examination of hourly data 26

is particularly relevant for heat stress because heat stress deaths are linked to multiple hours of 27

exposure [22], and the frequency of life-threatening heat waves is expected to increase in most 28

climate change scenarios [23]. 29

We examine hours above and below key temperature thresholds: the freezing point, heat stress, 30

and energy usage. These temperature thresholds have clear impacts on day-to-day life. Whether the 31
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air temperature is above or below freezing is an important bifurcation in weather processes as it 32

determines whether there is dew versus frost or rain versus snow. Freeze-thaw cycles are a major 33

source of wear on roads and outdoor infrastructure [24]. A temperature of 30◦ C (86◦ F) is when 34

people start to feel heat stress [11]. It is also a threshold for heat stress impacts on crops and 35

domestic cattle [11–15]. Heating and cooling degree hours are based on a deviation from 18◦ C (65◦ 36

F) and weighted by estimated energy usage. Our findings for temperature thresholds complement 37

traditional methods of reporting climate changes in terms of deviations from long-term averages and 38

the probabilities of extreme events [1–3]. 39

The temporal scale and reporting advantages of analyzing hourly data also support broader 40

science communication objectives. Science communicators need to continue experimenting with and 41

refining concepts that can help engage diverse audiences with respect to climate change awareness 42

and impacts [25,26]. We believe that distilling results from hourly historical observations has the 43

potential to function as a useful climate change communication tool. Our goal is to provide 44

information that can help motivate climate adaptation steps by individuals and businesses that are 45

tailored for local and regional areas. It is often easier to convince someone of the necessity for action 46

when information is related to their lived experiences [27,28]. 47

Data and Methods 48

We use the National Centers for Environmental Information’s (NCEI’s) Integrated Surface Database 49

Lite (ISD-Lite) quality-controlled hourly surface weather observation data from 1978 to 2023 for 50

locations across the CONUS and southern Canada [29,30]. Examination of the 46-year period from 51

1978 to 2023 is relevant for planning for anticipated changes in the next 10- to 20-year time 52

frame [31]. While some weather stations have recorded hourly observations back to the 1940s, 53

archival of hourly air temperatures did not become routine across the US and Canadian operational 54

networks until the late 1970s. The ISD-Lite is a derived product representing a subset of information 55

included in the full ISD provided by the NCEI [29,30]. The ISD contains a variety of combined 56

surface hourly datasets from across the world. The observations are distilled into a structured 57

attribute table after undergoing NCEI’s standardized quality control methods. Air temperature is 58

one of the parameters validated most extensively in the ISD datasets [30]. The ISD-Lite version is 59

designed primarily for general research purposes and omits complicated flags and special 60

observations that are part of the full ISD. 61

Airport Weather Station Data 62

All 340 sites used for analysis correspond to the locations of airports. In the ISD and ISD-Lite, each 63

station is characterized using multiple different identifiers (IDs) such as the United States Air Force 64

(USAF) ID, Weather Bureau Army Navy (WBAN) ID, and the International Civil Aviation 65

Organisation (ICAO) ID. In some cases, a single ICAO ID may be associated with more than one 66

USAF and/or WBAN ID in the ISD-Lite. If a station is moved within an airport’s grounds or 67

upgraded, the USAF and WBAN IDs may change while the ICAO ID does not. This irregularity 68

yields a set of encoded stations for the same ICAO ID corresponding to different time spans. In 69

these cases, we verified the encoded stations with the same ICAO ID are within 0.03 of a degree 70

latitude and longitude (∼3 km) of each other. We concatenated the data from these stations 71

together in order to build the airport’s complete historical hourly observation dataset from 1978 to 72

2023. In rare cases—likely due to a weather station being replaced—periods of overlap can exist in 73

the historical record between encoded stations of the same ICAO ID. We resolve any instances of 74

duplicate observations by giving priority to the encoded stations that have the most recent 75

observations available. In addition, locations used in this analysis had to contain a country code US 76

or CA, a latitude value less than 51◦ N, recorded hourly data dating back to at least 1978, and 77

current records of hourly observations in 2023. 78
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Fig 2. Hourly temperature distributions by year for (left) LaGuardia Airport (KLGA), New York
City, and (right) Hector International Airport (KFAR), Fargo, North Dakota, for each year from
1978 to 2023. Data from both stations are binned at 1◦ F and labeled in degree C. The Y-axis
temperature scales are aligned.

For the ISD-Lite, air temperature measurements for the CONUS in the NCEI archive are 79

encoded to a tenth of degree C. In contrast the Canadian stations, as well as the majority of stations 80

across the world, are archived in whole degrees C. 81

A station’s overall quantity of hourly data was evaluated in order to minimize the impact of 82

missing data. Each year within a station record is independently evaluated. As a part of this 83

process, observations from all leap days (29 February) are removed. If data for a particular year do 84

not have ≥ 7500 hourly observations of the total possible 8670 hours, that year’s data are discarded 85

completely as this can skew results. If 3 or more years are consecutively discarded, the station will 86

be excluded from the list of stations to be used in the study. A station will also be excluded if 13 or 87

more years are discarded from the 46-year period (1978-2023). These protocols aim to preserve both 88

the reliability and temporal continuity of trends. 89

We checked if each station had any extreme abnormalities or abrupt shifts within the 90

temperature record. The only location removed based on these criteria was the Montréal-Mirabel 91

International Airport (CYMX) in Quebec because it displayed a major, uncharacteristic shift in 92

reporting values in 2005. Out of the 998 potential airports in the CONUS and southern Canada, 340 93

stations met the filtering standards required to be included in the analysis. 94

The hourly air temperature records for each station can be used to visualize the year-by-year air 95

temperature distributions. Example frequency distributions of air temperature for each year over the 96

46-year period are shown in Fig 2 for both LaGuardia Airport (KLGA) in New York City and 97

Hector International Airport (KFAR) in Fargo, North Dakota. As expected, due to its inland 98

continental climate and higher latitude than New York City, the median temperature at Fargo is 99

lower and the distribution of temperatures is wider compared to coastal New York City. 100

Metrics Examined 101

We investigate how the number of hours below 0◦ C (32◦ F) and above 30◦ C (86◦ F) each year has 102

varied between 1978 and 2023 and if there are consistent and notable trends. We use heating degree 103

hours and cooling degree hours as a metric related to energy usage. Daily minimum, maximum, and 104

average air temperature data have been frequently used as a proxy for energy usage in the form of 105

heating degree days and cooling degree days [32]. A heating degree day corresponds to the energy 106

needed to heat a building to a particular base temperature, while a cooling degree day pertains to 107

the energy needed to cool a building to a particular base temperature. Representations of higher 108

temporal resolution, such as heating degree hours and cooling degree hours, can be calculated in a 109

manner similar to degree day values. Degree day values are often based on mean daily air 110
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temperatures and have been found to almost always underestimate the degree hour measurements 111

computed directly from hourly data [33,34]. We use a base temperature (B) of 18◦ C (65◦ F) for our 112

degree hour calculations as this is the widely accepted value used in other regional studies [35]. For 113

each station, heating degree hours and cooling degree hours are directly calculated for each hourly 114

observation in the time period. Following the methods of [34], for an air temperature measurement 115

(T ) in degree C with base temperature (B = 18◦ C), the cooling degree hours (CDH ) and heating 116

degree hours (HDH ) for any particular hourly observation (i) are calculated as follows: 117

CDHi =

{
Ti −B Ti > B
0 Ti ≤ B

HDHi =

{
B − Ti Ti < B
0 Ti ≥ B

Metrics are calculated for each station independently, and then regional geographic consistency is 118

used as a check on the representativeness of the results. It may be the case that land-use changes 119

over the decades at and near an individual airport can yield results at a particular location that are 120

not consistent with other locations in the region. 121

The threshold metrics related to air temperature fall on whole number values for both degree F 122

and degree C (0◦ C = 32◦ F and 30◦ C = 86◦ F). The threshold value used for heating and cooling 123

degree hours of 65◦ F corresponds to 18.33◦ C for a quantization error of 0.33◦ C for this metric. 124

Utilizing Linear Regression 125

Over the span of a few decades, linear trends provide a useful approximation of the observed 126

temperature changes at a given location [36–38]. Linear trends are not designed to capture nonlinear 127

behaviors. The quantitative values of the computed trends are closely tied to the specific observation 128

period from 1978 to 2023. 129

The number of hours below 0◦ C (32◦ F) and above 30◦ C (86◦ F) as well as the number of 130

heating degree hours and cooling degree hours are counted for each individual year. We then fit a 131

modeled linear regression to each metric individually for each station to depict the 46-year trends 132

(e.g., Fig 3). Linear trends are represented for air temperature thresholds in terms of hours per 133

decade and for both degree hours metrics in terms of degree hours per decade. Stations that have a 134

median of < 10 hours per year meeting the threshold criteria are designated as having insufficient 135

threshold hours and a trend is not computed. 136

For each metric, the residual standard deviation, a measure of goodness of fit of the linear 137

regression model, is used as a proxy for interannual variability. A greater residual standard deviation 138

intuitively implies a greater range of threshold hours or degree hours observations across the time 139

range relative to the linear regression model. We chose this strategy as opposed to calculating the 140

variance of each sample set directly because the vast majority of observed distributions do not have 141

Gaussian distributions. The residual standard deviation values are independently assessed for each 142

air temperature threshold and degree hour metric and are not normalized. 143

Statistical Testing to Determine Trend Significance and Variability 144

We examine if the magnitude of the linear trend is large enough to be notable in the sense that the 145

observed trend is unlikely to have occurred by chance. We apply a permutation test (also known as 146

a randomization test or a form of Monte Carlo test) in order to assess the significance of the linear 147

regression trend. Permutation tests have been commonly used as a method of statistical hypothesis 148

testing that can be adapted for a variety of experimental applications [39–42]. We follow established 149

methods for permutation testing [40,41]. The null hypothesis is that the linear regression trend in 150

hours per decade calculated is attributable to random variation of the observed distribution over 151

time. The distribution is permuted by shuffling the samples of the observed dataset without 152

replacement, representing a different arrangement of the original sample of observations [40]. The 153
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Fig 3. (top left) The number of observations below 0◦ C (32◦ F) and (top right) above 30◦ C (86◦

F), along with (bottom left) the counts of heating degree hours and (bottom right) cooling degree
hours, for LaGuardia Airport (KLGA), New York City, from 1978 to 2023. A linear regression model
is used to depict the overall long-term changes for each metric. For KLGA, the linear fit equates to a
loss of ∼18.5 days (∼446 hours) below freezing temperatures and gain of ∼5 days (∼112 hours) of
temperatures above 30◦ C (86◦ F) between 1978 and 2023. The residual standard deviation
describes the year-to-year variability of each metric. Residual standard deviations and p-values are
shown below each subplot. The p-values for all 4 subplots are < 0.05, indicating that the trends are
significant.
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Fig 4. (top left) The number of observations below 0◦ C (32◦ F) and (top right) above 30◦ C (86◦

F), along with (bottom left) the counts of heating degree hours and (bottom right) cooling degree
hours, for Pierre Regional Airport (KPIR), South Dakota, from 1978 to 2023. A linear regression
model is used to depict the overall long-term changes for each metric. The residual standard
deviation describes the year-to-year variability of each metric. Despite demonstrating nonzero trend
magnitudes, particularly in the winter season, these trends are insignificant due to the overall high
variability. Residual standard deviations and p-values are shown below each subplot. The p-values
for all 4 subplots are > 0.05, indicating that the trends are not significant.

test statistic, the linear regression trend, is then calculated for each permutation. This process is 154

repeated to generate 10,000 permutations of the potential 46! combinations possible in order to 155

compile the permutation distribution of potential trend magnitudes. The observed test statistic is 156

then compared to the distribution of permutation tests. The null hypothesis is rejected, and the 157

trend is marked significant if the observed trend falls within either extreme 5th percentile of the 158

permutation distribution (standard two-tailed p-value of ≤ 0.05). Based on the 46 observations in 159

each station sample, the 0.05 threshold would be classified as a fair significance for this sample 160

size [43]. By this criterion, the metrics illustrated for LaGuardia Airport (KLGA) in Fig 3 are all 161

statistically significant trends. In comparison, the trends for Pierre Regional Airport (KPIR) in 162

South Dakota (Fig 4) are not significant despite illustrating nonzero magnitudes. 163

There are a multitude of advantages that support the use of the permutation test for our specific 164

application. This test makes no assumptions regarding the underlying population distribution of the 165

data when producing samples or evaluating the trend statistic [40,41]. The occasional presence of 166

outliers in the sample distributions is mitigated in their impact relative to the statistic being tested 167

under the methodology of the permutation test [39,40]. Furthermore, permutation tests have the 168

ability to yield powerful statistical results for small sample sizes, which applies to the 46-year time 169

range analyzed [39,42]. Under the null hypothesis stated, the shuffling component assumes that any 170
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observation from the distribution can randomly take place during any year between 1978 and 2023. 171

While randomness is not characteristic of actual air temperature time series that include year-to-year 172

dependencies based on short-term internal climate variability [44–47], the permutation test 173

adequately serves the purpose of testing the significance of the simplified linear regression trend. 174

Results 175

Information on where there are significant trends and where year-to-year variability is high is helpful 176

in understanding how warming climate manifests region by region. Geographic maps of the 177

variability of historical air temperature changes are usually not included in materials designed for 178

policymakers [3]. Information on trends and variability for each weather station reveals regional 179

spatial consistency for the temperature thresholds (Fig 5) and degree hours (Fig 6). The study area 180

is divided into 4 approximately equal-area quadrants by lines along 37◦ N and the 98◦ W to 181

facilitate comparisons among regions. 182

Freezing Point and Heat Stress Thresholds 183

In the winter season, large, significant negative trends in hours below 0◦ C (32◦ F) are clustered in 184

the northeastern portion of the CONUS (Fig 5) (82 out of 137 stations). For locations east of the 185

Mississippi River and north of 37◦ N, these trends correspond with a decrease of ∼1.5 to 2 weeks of 186

hours below freezing since the early 1980s. In the northwest quadrant, most locations (68 out of 82 187

stations) in Minnesota, Iowa, North Dakota, South Dakota, Montana, Wyoming, Washington, and 188

southern Canada have high year-to-year variability without a significant trend. As expected, there 189

are smaller losses in number of hours below 0◦ C (32◦ F) in the southern US states as compared to 190

more northern locations because there are fewer hours below 0◦ C (32◦ F) in southern locations 191

overall. While the magnitudes were low, 65% of stations in the southeast region (58 of 89 stations) 192

demonstrated significant negative trends in hours below 0◦ C (32◦ F). 193

In the summer season, almost all locations west of the Rocky Mountains have significant positive 194

trends in the hours above 30◦ C (86◦ F) (Fig 5). Specifically, 81% of stations in the southwest region 195

(26 of 32 stations) feature significant positive trends in hours above 30◦ C (86◦ F). The highest 196

magnitude summer warming trends are in southern California, Nevada, Arizona, New Mexico, Texas, 197

Louisiana, and Florida. In these locations, the occurrence of temperatures above 30◦ C (86◦ F) 198

increased by ∼1.5 weeks’ worth of hours since the late 1970s. Many stations in the central CONUS 199

(Nebraska, Kansas, Missouri, Illinois, Indiana, Oklahoma, and Arkansas) indicate high variability 200

and no significant trends in hours above 30◦ C. 201

Heating Degree Hours and Cooling Degree Hours 202

The regional analyses of both degree hour variables (Fig 6) complement the findings illustrated in 203

the air temperature threshold maps (Fig 5). Apart from the midwestern United States, an 204

overwhelming majority of stations have significant decreases in heating degree hours (proxy for 205

decreasing energy usage trends in the winter) and increases in cooling degree hours (proxy for 206

increasing energy usage trends in the summer). Heating degree hours and cooling degree hours relate 207

to likely changes in the relative energy use not accounting for any changes in technology, insulation, 208

and building codes. The greatest decreases in the amount of heating degree hours in the winter have 209

occurred in states in the mid-Atlantic and south of the Great Lakes. The greatest increases in 210

cooling degree hours in the summer have occurred in Florida, Louisiana, southeastern Texas, and 211

portions of the southwest. In summer, locations near the geographic center of the CONUS (e.g., 212

Oklahoma, Kansas, Nebraska, South Dakota) often have high variability in cooling degree hours 213

without significant trends. 214

We compared statistics for cooling degree hours versus cooling degree days and heating degree 215

hours versus heating degree days (not shown). In terms of the significance of the trends, there was 216
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Fig 5. Changes in (top) the number of hours below 0◦ C (32◦ F) and (bottom) number of hours
above 30◦ C (86◦ F) from 1978 to 2023 for 340 airports across the CONUS and southern Canada.
Dashed gray lines at 37◦ N and 98◦ W separate geographic quadrants representing the northeast,
northwest, southeast, and southwest regions of the CONUS and southern Canada study area.
Statistically significant trends in units of hours per decade are shown in colored circles. Warming
trends are denoted in shades of red and orange for both maps. Insignificant trends are divided into
categories of high variability (residual standard deviation ≥ median residual standard deviation) or
low variability (residual standard deviation < median residual standard deviation). Stations with
insufficient threshold hours passed all filtering procedures but have a median of < 10 threshold
hours each year for the corresponding metric across the 46-year period. Basemap and country
boundaries were plotted using the Mapping Toolbox for MATLAB [48]. The public domain base
layer shapefiles are from Natural Earth.
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Fig 6. Changes in (top) the number of heating degree hours and (bottom) cooling degree hours
from 1978 to 2023 for 340 airports across the CONUS and southern Canada. Statistically significant
regression trends are colored by magnitude in terms of degree hours per decade. Dashed gray lines at
37◦ N and 98◦ W separate geographic quadrants representing the northeast, northwest, southeast,
and southwest regions of the CONUS and southern Canada study area. Stations without significant
trends are divided into categories of high variability (residual standard deviation ≥ median residual
standard deviation) or low variability (residual standard deviation < median residual standard
deviation). Basemap and country boundaries as in Fig 5.
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not much difference for heating, but using cooling degree hours rather than days increased the 217

number of stations with significant trends by 31. 218

Winter warming often offsets summer warming in terms of the degree hour energy use proxy (Fig 219

7). The 185 stations that have both significant heating and cooling degree hour trends are divided 220

into 4 quadrants using their position relative to 37◦ N and 98◦ W. For all stations in the northwest 221

quadrant and most in the northeast quadrant, the reduction in heating degree hours in winter is 222

outpacing the increase in cooling degree hours in summer (Fig 7). This also holds true for 223

approximately half of all stations in the southern half of the CONUS. In winter, locations with high 224

variability in heating degree hours without significant trends occur in southern Canada, Montana, 225

Wyoming, the Dakotas, and high-altitude locations in western states. 226

Variability 227

Information on year-to-year variability is extremely relevant for climate change adaptation and in 228

some cases may be more relevant than if a notable trend is present. More variability in recent 229

historical conditions is likely to continue into the near future, yielding a wider range of outcomes 230

that communities need to prepare for than if a notable trend was present. We can obtain 231

information on the nature of variability for each station by examining the relationship between trend 232

magnitudes and the residual standard deviations (Fig 8). Smaller residual standard deviations 233

imply better linear trend fits as compared to higher residual standard deviations. 234

For the stations with significant trends, the variability is more organized along the trend line. 235

Larger magnitude trends tend to be associated with higher variability as measured by the residual 236

standard deviation (Fig 8). Some stations categorized with insignificant trends by the permutation 237

test have weak trends with high variability, while others have weak trends with low variability (black 238

dots in Fig 8). In Figs 5 and 6, stations with insignificant trends and with a residual standard 239

deviation greater than or equal to the median are classified as high variability, and those with a 240

residual standard deviation less than the median are classified as low variability. Stations marked 241

insignificant with low variability are likely to exhibit a weak trend magnitude. 242

An insignificant trend with high variability may or may not imply any changes over time. For 243

each of the four metrics in Fig 8, the dividing line between stations marked with a significant trend 244

and those marked with an insignificant trend has an approximate slope of 4:1. This is likely 245

dependent in part on the specific number of observations being shuffled (46 years) within the 246

permutation test that marks significance. Hence, the specific stations falling along either side of the 247

geographic borders of insignificant and significant trends will vary slightly depending on the length 248

and specific years of the historical period examined (Figs 5 and 6). 249

Discussion 250

Summary of Findings 251

Analysis of hourly temperature variations improves the ability to resolve and evaluate the impacts of 252

weather and climate change that cannot be readily captured by daily mean or daily minimum and 253

maximum values [49,50]. Hourly data provides a higher degree of granularity that can support 254

analyses of diurnal and short episodic temporal variations, which daily data cannot provide. We 255

examine several societally relevant metrics based on hourly temperature data: hours below 0◦ C (32◦ 256

F), hours above 30◦ C (86◦ F), heating degree hours, and cooling degree hours. We calculate trends 257

based on linear regression and assess their significance based on a permutation test. Decadal 258

statistics that show spatially consistent values among nearby stations increase confidence in the 259

findings. It is simpler to plan and justify adaptation strategies for locations with clear trends. 260

Stations with low variability and without significant trends experienced small changes in recent 261

decades. It is difficult to anticipate likely near-future changes for stations with high variability and 262

without significant trends. High year-to-year temperature variability brings the potential for reserve 263
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Fig 7. Trends in heating degree hours compared to trends in cooling degree hours for subset of 214
stations that have both significant heating degree hours and cooling degree hours trends. This subset
of stations is further divided into geographic quadrants separated by 37◦ N and 98◦ W, representing
the northeast, northwest, southeast, and southwest regions of the CONUS and southern Canada
study area. For all northwest stations (orange), almost all northeast stations (green), and
approximately half of both southern regions (cyan and pink), the reduction in energy usage (heating
degree hours) in winter outpaces the increase in energy usage (cooling degree hours) in summer.
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Fig 8. Trend magnitude and residual standard deviation for stations with significant trends (orange
dots) and with insignificant trends (black dots) as determined by the permutation test. Median
residual standard deviation is shown by the red line in each panel. (top left) Hours below 0◦ C (32◦

F), (top right) hours above 30◦ C (86◦ F), (bottom left) heating degree hours, and (bottom right)
cooling degree hours.
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energy margins to be frequently stretched beyond the anticipated average seasonal peak capacity 264

during long periods of exceptionally hot or cold temperatures. 265

Analysis of historical hourly weather station observations in the CONUS and southern Canada 266

from 1978 to 2023 reveals the variability and trends of recent air temperature changes. This detailed 267

hourly analysis complements previous work based on the daily temperature record [1–3]. We add 268

value by providing information on temperature threshold variability and significance of trends. The 269

key findings of this analysis are: 270

• Many stations in southern Canada and the north-central US (North Dakota, South Dakota, 271

Minnesota, Wisconsin, Iowa, Wyoming, and Nebraska) lack clear decadal trends in hours below 272

0◦ C and above 30◦ C. 273

• Most stations east of the Mississippi River and north of 37◦ N have lost the equivalent of ∼1.5 274

to 2 weeks temperatures below 0◦ C. These locations also typically have smaller magnitude 275

trends of warming in summer than in winter. 276

• Multiple stations in Arizona, New Mexico, and parts of southern Nevada, southern California, 277

and southern Texas have gained the equivalent of ∼1.5 weeks of temperatures higher than 30◦ 278

C, a threshold at which agricultural crops and animals start to experience heat stress 279

symptoms. 280

• Nearly all stations in the northeast and northwest portions of the CONUS have lost more 281

heating degree hours than gained cooling degree hours, which suggests a net decrease in annual 282

energy use based on this proxy. 283

Hourly temperatures at any given location are influenced by multiple interacting factors, 284

including characteristics of synoptic scale waves of high and low pressure, storm tracks, cloudiness, 285

precipitation patterns, soil moisture, surface type, and distance to large bodies of water [16]. 286

Interannual climate variability [44–47,51] can also modulate regional distributions of hourly 287

temperatures on annual timescales directly or via teleconnections. Future work is recommended to 288

diagnose the relative importance of these factors in explaining the historical results presented in this 289

study. Recent work [52,53] using machine learning and explainable artificial intelligence to 290

distinguish between climate change trends and internal climate variability are approaches that may 291

be fruitful. 292

For weather stations adjacent to nearby cities, it is likely that our four hourly metrics are being 293

impacted in part by the warming induced by urban expansion since 1978 [54]. The urban heat island 294

effect increases the risks of heat stress and heat-related illnesses for those living in urban 295

areas [55,56]. For example, [57] found that the urban heat island around New York City impacts the 296

local mesoscale weather by locally increasing temperatures by ∼4◦ C during the summer and ∼3◦ C 297

during the winter. 298

Anthropogenic climate change and and surface cover changes, including urban heat island and 299

ecosystem changes such as replacement of forest by agriculture [58], tend to accumulate and evolve 300

over time. The observed trends derived from the hourly data encompass the combined impacts of 301

these factors. As a consequence, the year-to-year observations within the time series of each metric 302

for each station are not assumed to be independent of one another. Some details of weather station 303

siting may yield large discrepancies among geographically adjacent locations. We emphasize the 304

more robust findings that have regional geographic coherence. 305

Applications 306

This study’s framework of hourly temperature threshold analysis enables the improved detection of 307

subtle but ecologically significant shifts that daily data might overlook, thereby strengthening the 308

capacity to anticipate and adapt to these ecosystem and societal impacts. Examination of hourly air 309

temperature data is potentially useful for ascribing shifts in ecological patterns and organism 310
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behaviors, changes in snowpack volume, and growing season duration. The sharp decreases in the 311

number of hours below freezing have far-ranging implications for ecosystems across the eastern 312

regions of the CONUS. Over the past few decades, both snowfall accumulation totals and snowfall 313

depths have decreased in conjunction with warmer winters in the upper midwest and northeast of 314

the CONUS [59]. The degree to which insect populations survive the winter is related to both 315

snowpack and temperature changes [60]. The increased length of the growing season by 10 to 20 days 316

in many regions of the CONUS is primarily due to an earlier onset of warmer temperatures and a 317

decreased amount of freezing temperatures during the seasonal transition from winter to spring [61]. 318

Communicating trends and variability is crucial for aiding the public’s understanding of 319

climate [62]. A given winter may not always be warmer than the one preceding it. Many people who 320

have lived in a given location for several decades recognize that there are more warm spells in the 321

winter than there used to be. Translating this perception into the loss of 1.5 weeks of temperatures 322

below freezing for the northeast CONUS makes it more tangible than reporting that average winter 323

season temperatures have increased by 1◦ F to 2◦ F from 2002 to 2021 as compared to 1901 to 324

1960 [3]. How the human mind processes the temporal aspects of a changing climate differs for 325

shorter versus longer periods of time [63]. Effective data storytelling and methods that connect with 326

the audience’s personal experiences can help to reframe issues to make them more relevant and 327

actionable [64] and can further engage the public with these issues [25,26]. 328

Information on impacts based on hourly data analysis of temperature threshold metrics helps to 329

connect lived experience to quantitative values that can be used by policymakers, businesses, and 330

homeowners to justify and plan climate adaptations such as targeted modifications to infrastructure. 331

For example, local adaptation strategies to decrease the ambient temperatures within and near cities 332

are crucial for limiting heat stress as well as summer season energy costs and need to be tailored for 333

each location [65]. We believe that these types of analyses could serve as part of a science 334

communication strategy to engage the public and decision-makers and motivate pragmatic climate 335

action. 336
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