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ABSTRACT

Two cool seasons (November–March) of daily simulations using the fifth-generation Pennsylvania State

University–NCAR Mesoscale Model (MM5) over the Pacific Northwest are used to investigate orographic

precipitation bias. Model simulations are compared with data from a radiosonde site at Salem, Oregon, just

upstream (west) of the Oregon Cascades; precipitation gauges over a portion of the Pacific Northwest; and

aNationalWeather ServiceWeather SurveillanceRadar-1988Doppler (WSR-88D) in Portland, Oregon. The

77 storms analyzed are partitioned into warm/cold storms based on the freezing level above/below theOregon

Cascades crest (;1600 m MSL). Although the seasonal precipitation is well simulated, the model has a ten-

dency to overpredict surface precipitation for cold storms. The correlation between the upstream relative

humidity–weighted integratedmoisture transport and precipitation for warm storms (r 25 0.81) is higher than

that for cold storms (r 2 5 0.54). Comparisons of model ice water content (IWC) and derived reflectivity with

radar-retrieved IWC and observed reflectivity for the 38 well-simulated storms show reasonably good

agreement for warm storms but an overprediction of IWC and reflectivity aloft for cold storms. One plausible

reason for the persistent overprediction of IWC in cold storms might be related to the positive bias in snow

depositional growth formulation in themodel bulkmicrophysics parameterization. A favorable overlap of the

maximum snow depositional growth regionwith themountainwave ascent region in cold stormsmagnifies the

bias and likely contributes to the precipitation overprediction. This study also highlights the benefit of using

data aloft from an operational radar to complement surface precipitation gauges for model precipitation

evaluation over mountainous terrain.

1. Introduction

Quantitative precipitation forecasting (QPF) continues

to be a significant challenge (Ralph et al. 2005). Winter

precipitation over the Pacific Northwest is usually related

to a combination of synoptic-scale storms from the Pacific

Ocean and terrain forcing (e.g., Neiman et al. 2011; Yuter

et al. 2011). Several studies have investigated the im-

pacts of horizontal resolution and different micro-

physical parameterizations on simulated orographic

precipitation (e.g., Colle et al. 1999; Colle and Mass

2000; Leung and Qian 2003; Grubisi�c et al. 2005; Mass

et al. 2002; Garvert et al. 2005a,b; Lin and Colle 2009).

At relatively high resolution (1–2-km grid spacing),

the horizontal flow, vertical motion, and precipitation

distributions are realistically represented over terrain

(Garvert et al. 2005b; Colle et al. 2005); however, nu-

merous precipitation biases over terrain at high resolu-

tion have been noted. These biases have been attributed

in part to deficiencies in the model bulk microphysical
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parameterizations (BMPs) (e.g., Colle and Mass 2000;

Garvert et al. 2005b; Milbrandt et al. 2008, 2010). In

addition to the model BMPs, errors from synoptic and

mesoscale kinematic and thermodynamic fields also

impact model QPF (Richard et al. 2007; Roebber et al.

2008; Minder et al. 2008; Schlemmer et al. 2010).

Low-level moisture flux is an important ingredient for

orographic precipitation (Smith 1979). The strong cor-

relation between upstream water vapor transport and

orographic precipitation has been documented in many

locations, such as along the California coast (Neiman

et al. 2002; Smith et al. 2010), the European Alps (Smith

et al. 2003; James et al. 2004; Muller and Kaspar 2011),

and the Andes (Smith and Evans 2007; Falvey and

Garreaud 2007). Colle et al. (2008) and Hahn and Mass

(2009) used a case study approach to show that the ac-

curacy of the predicted precipitation over the Pacific

Northwest is dependent on the upstream moisture flux

errors. The drying ratio (DR) (Smith et al. 2005) is

a metric of the relative amount of water vapor removed

by precipitation compared to the inflow water vapor. It

follows that the larger the observed drying ratio, the

stronger the dependence of model precipitation errors

on upstream moisture flux errors. Smith et al. (2005)

estimated an annual drying ratio of 0.43 for Oregon.

Operational radar observes precipitation-sized parti-

cles in a three-dimensional volume and thus provides

a way to complement surface precipitation evaluation.

Surface precipitation is essentially the accumulation of

vertical mass flux of precipitating hydrometeors. Thus,

precipitating hydrometeors aloft is closely related to

surface precipitation by the fall speeds of hydrometeors.

Ground-based radars have been used to evaluate the

model precipitation and wind structures over a barrier

for specific case studies, but operational radars have not

been used previously over multiple seasons to evaluate

the model precipitation predictions over mountainous

terrain.

Analysis of a large sample of storms from two cool

seasons allows us to take previous work a step further.

Large samples of storms help identify systematic biases.

In this paper, we examine how variations in freezing-level

height can modify both the observed relationship be-

tween inflowmoisture flux and precipitation as well as the

relationship between model errors in moisture flux and

errors in predicted precipitation. We utilize gauge, ra-

diosonde, and three-dimensional radar datasets to deduce

potential sources of surface precipitation error within the

model. Combining upstream moisture flux, precipitating

hydrometeors aloft, and surface precipitation together

gives a complement framework for model precipitation

evaluation. This also helps identify model potential error

sources.

After describing the experiment setup and obser-

vational datasets in section 2, the model precipitation

performance and its connection to upstream moisture

flux and freezing-level height are presented in section

3. Section 4 summarizes the main results with a brief

discussion.

2. Model setup and observational datasets

a. Model setup

The fifth-generation Pennsylvania State University–

National Center for Atmospheric Research Mesoscale

Model (MM5) version 3.7 was used with 1.33-, 4-, and 12-

km domains nested within a 36-km domain covering

a wide region of the eastern Pacific and PacificNorthwest

(not shown). The 4-km domain covers a portion of

Washington and Oregon (Fig. 1), while the 1.33-km do-

main is centered over parts of southwestern Washington

and northwestern Oregon. The MM5 was used in this

study rather than the Weather Research and Forecasting

Model (WRF; Skamarock et al. 2008) since 1) many

orographic precipitation case studies in this region have

used MM5 (e.g., Colle and Mass 2000; Grubisi�c et al.

2005; Mass et al. 2002; Garvert et al. 2005a,b) and 2) this

study is not to verify the latest model and parameteriza-

tions, but rather to generalize some of the previous case

study results and to illustrate the influences of moisture

flux and freezing level on the precipitation errors, which

can occur for any modeling system. The Thompson et al.

(2004) BMP in MM5 was replaced with the Thompson

et al. (2008) version, which was available in version 2 of

WRF, so that these results can be related to other WRF

studies using this scheme (Thompson et al. 2008; Colle

et al. 2008; Lin and Colle 2009).

For the 2005/06 and 2006/07 cool seasons (November–

March), theMM5was run twice daily to 24 h starting at

0000 and 1200 UTC, with initial and lateral boundary

conditions derived from the 6-h National Centers for

Environmental Prediction (NCEP) Global Forecast

System (GFS) model analyses at 18 spacing. The snow

cover for eachMM5 run was initialized using the Rapid

Update Cycle (RUC) analysis (20-km horizontal spac-

ing), whereas the sea surface temperature, soil tempera-

ture, and soil moisture were obtained from the GFS

analysis. The 4- and 1.33-km domains were initialized at

0600 and 1800UTCusing the 6-h forecast from the 12-km

domain using a one-way nesting. Four-dimensional data

assimilation (analysis nudging; Stauffer and Seaman

1990) was used during the first 12 h of the 36- and 12-km

domains. The goal of nudging the outer domains and

the use of GFS analysis boundary conditions was to re-

duce the large-scale errors in order to investigate the
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short-term performance within the inner nests. The last

12 h of the 18-h simulation (6–18 h) from the 4- and

1.33-km domains were used for verification.

Themodel physics include the eta planetary boundary

layer (PBL) (Janji�c 1994), Thompson microphysics

(Thompson et al. 2008), Dudhia (1989) short- and long-

wave radiative transfer, and MM5 simple slab land sur-

face model. The modified Kain–Fritsch cumulus scheme

(Kain and Fritsch 1993; Kain 2004) was used in the 36-

and 12-km domains. A positive definite moisture advec-

tion (PDA) scheme (Skamarock 2006) was not available

inMM5. Hahn andMass (2009) showed a PDAmoisture

scheme in WRF can reduce the surface precipitation by

3%–17% over the Pacific Northwest for a particular case

study. Lin and Colle (2009) noted an approximately

10% reduction of surface precipitation when using

PDA for another case study over the Oregon Cascades.

The interpretation of the precipitation verification results

in this study includes an expectation of model surface

precipitation overprediction of up to 20%, since PDA

was not used.

b. Observational datasets

1) PRECIPITATION GAUGE NETWORK

Daily liquid-equivalent precipitation data from the

National Weather Service (NWS) Cooperative Ob-

server Program (COOP) stations and the National Re-

sources Conservation Services (NRCS) snowpack

telemetry (SNOTEL) sites (Fig. 1) were synthesized to

evaluate the model surface precipitation performance.

Previous studies by Garvert et al. (2005b) and Colle et al.

(2008) have suggested that 1.33-km grid spacing better

resolves the vertical motions over the Cascade Moun-

tains than 4-km grid spacing; thus, the precipitation

verification in this paper will focus on the 1.33-km do-

main. The twice-daily precipitation forecasts (6–18 h)

from the 1.33-km MM5 domain were interpolated to the

gauge locations using an inverse distance (Cressman

1959) approach, as in Colle et al. (1999), and summed

to get the model 24-h precipitation. We define model

precipitation bias score for a storm as the ratio be-

tween the mean forecast precipitation for all stations

FIG. 1. Model 4- and 1.33-km domain with observational facilities overlaid. The black circle

indicates the 150-km range of the WSR-88D at Portland (RTX); crosses are the precipitation

gauge sites. SLE is the radiosonde site at Salem, OR. The dashed west–east box is the cross

section used in Fig. 6.
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(56 in total) within the 1.33-km domain and the ob-

served mean precipitation at these same stations. The

inhomogeneous spatial distribution of these gauge

stations may introduce some representative uncertain-

ties. Precipitation gauge undercatchment is difficult to

quantify and depends on precipitation types and

snowflake types (Groisman and Legates 1994; Colle

and Mass 2000; Theriault et al. 2012). Groisman and

Legates (1994) estimated a roughly 5%–15% gauge

undercatchment error for rain. The accuracy of snow

measurement depends on both the wind speed and the

type of snowflake, and undercatchment for snow can

be up to 50% under windy conditions (Theriault et al.

2012). This might explain some of the different biases

for warm and cold storms discussed later. To account

for some precipitation gauge undercatchment (;10%)

and not using PDA for moist variables (20%), the over-

and underprediction days in the analysis are defined

as bias scores greater than 1.3 and less than 1.0,

respectively.

2) RADIOSONDE

Radiosonde observations of wind, pressure, tem-

perature, and moisture are made twice daily (0000 and

1200 UTC) at Salem, Oregon (SLE in Fig. 1). Both the

4-km MM5 and observed meteorological variables

were linearly interpolated to a vertical grid spacing of

200 m between 100 and 7900 m MSL. To relate the

12-hourly SLE soundings to the daily precipitation,

daily profiles of moisture, winds, and temperature were

computed following Falvey and Garreaud (2007):

X5 (X212h 1 2X01X12h)/4, (1)

where X212h and X12h are moisture, winds, and temper-

ature observations 12 h before and 12 h after the radio-

sonde observations at 1200 UTC X0.

A dry bias has been noted for the Vaisala radiosonde

(e.g., Turner et al. 2003), and we found a similar dry bias

during saturated conditions in the SLE sounding (not

shown). Therefore, following Turner et al. (2003), we

apply a 5% increase of relative humidity (RH) to the

SLE sounding, with the caveat that RH cannot exceed

100% with respect to water. The 4-km MM5 forecasts

every 12 h at forecast hour 6 (0000 and 1200 UTC) were

interpolated to the Salem site, and the same daily average

method given in Eq. (1) was used to get the model daily

sounding. The model and observed column-integrated

RH-weighted moisture flux (for simplicity, called mois-

ture flux hereafter) was computed from the sounding.

Wind and temperature near the crest level (1.5 kmMSL)

are used for later storm categorization.

3) WSR-88D

The NWS Weather Surveillance Radar-1988 Doppler

(WSR-88D) at Portland, Oregon (RTX in Fig. 1), pro-

vided information of the three-dimensional precipita-

tion structures within the 150-km range of the radar. The

Level II data were interpolated to a grid with 2-km

spacing in the horizontal and 1-km spacing in the ver-

tical at about 6-min time intervals following Yuter et al.

(2011). The 1.33-km MM5 outputs at 15-min intervals

are interpolated horizontally and vertically to the cor-

responding radar grid points.

To compare the model cloud and precipitation with

radar directly, both model-derived radar reflectivity and

radar-retrieved ice water content (IWC) above the

freezing level are used.Model reflectivity is calculated in

the Rayleigh scattering regime using the microphysical

assumptions in Thompson et al. (2008), including par-

ticle size distribution and mass–dimension relationship.

IWC retrieval from centimeter-band radar has not

been extensively explored and can have substantial un-

certainties due to the ice particle shapes, size distribution,

and mass–dimension relationship, among others (e.g.,

Protat et al. 2007; Heymsfield et al. 2008). We follow

Hogan et al. [2006, their Eq. (14)] to retrieve IWC using

radar reflectivity and temperature. As in Hogan et al.

(2006), only measurements with an observed column

maximum reflectivity larger than 12 dBZ are used, which

includes primarily precipitation conditions. Correspond-

ingly, only model grid columns with nonzero surface

rainfall are considered in the analysis. We also limit the

comparison of IWC to those levels in the vertical with

temperatures less than 258C to minimize brightband ef-

fects on the radar-retrieved IWC.

The comparison focuses on a west–east cross section

box from the Willamette River valley to the Cascade

crest (dashed box in Fig. 1) within the 1.33-km domain

and RTX radar range to assess the orographic precipi-

tation enhancement. The box is chosen to minimize the

influence of the radar’s cone of silence and excludes re-

gions with severe radar beamblocking. The terrainwithin

the box gradually increases in height toward the east.

c. Storm selection and categorization

In this study, a heavy precipitation event is defined as

a day onwhich either observed ormodelmean rain gauge

precipitation within the 1.33-km domain is over 12.7 mm

(0.5 in.) over a 24-h period starting at 0000 UTC. This

threshold was chosen to focus on larger, longer-lasting

storms. From the resultant 90 events, we first removed the

poorly simulated events (5 days) based on a comparison

of the SLE sounding at 1.5 kmMSL (near the crest level

of Cascades) with the model. More specifically, those
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storms with an absolute temperature error greater than

4 K or wind direction error greater than 258 azimuth at

1.5 km MSL were removed from the study dataset. A

failure to reproduce these basic conditions in themodel is

likely related to a poor initialization. We further re-

stricted the analysis to 77 days with predicted or observed

southwesterly (1808–2708) winds at 1.5 km MSL, so that

the radiosonde at Salem is reasonably representative of

the inflow air going over the Cascades in our comparison

box. Freezing-level height relative to the mountain

heights determines precipitation types (rain or snow)

and fallout (rain falls much faster than snow). The aver-

age Cascades crest in the 1.33-kmmodel domain is about

1.6 km MSL; thus, these storms were partitioned into

warm or cold storms based on the freezing-level height

above or below Cascades crest. Specifically, warm (cold)

storms are those storms having SLE temperatures at

1.5 kmMSL greater (less) than218C. Consequently, the
dominant precipitation type over the model domain is

rain and snow for warm and cold storms, respectively.We

also categorized storms based on the model-integrated

moisture flux relative bias (.0.2, ‘‘overprediction’’;

,20.2, ‘‘underprediction’’; and ‘‘good’’ or ‘‘well pre-

dicted’’ otherwise) in Table 1. Finally, to separate the

effects of errors in upwind moisture flux and other

synoptic forcing from errors in mesoscale processes and

model physics, we focused on 38 well-simulated storms,

which have relative biases of wind speed at 1.5 km

MSL and integrated moisture flux less than 0.2 and

have a temperature bias at 1.5 km MSL less than 1 K

(Table 2). There are 16 cold storms and 22 warm storms

among the 38 well-simulated storms (Table 2).

3. Results

a. Seasonal precipitation, kinematics, and
thermodynamics evaluation

The heaviest precipitation accumulations within the

1.33-km domain (500–700 cm), based on the sum of two

cool seasons, are situated over some of the narrow ridges

that are exposed to southerly or southwesterly low-level

flow as well as the isolated volcanic peaks (Fig. 2a). Ob-

servations also show large precipitation values (200–

400 cm) over other ridges and near high mountain peaks.

For example, precipitation up to 697 cm was recorded

near Mount Rainer. Small-scale variations of model pre-

cipitation are hard to evaluate using the sparse preci-

pitation gauges over the area. Minder et al. (2008) found

persistent precipitation variation over approximately 10-

km-wide ridges and valleys in the western Olympic

Mountains, Washington, in both observations and MM5

simulations. This indicates some of the small-scale var-

iation of model precipitation may be real. Precipitation

minima (180–330 cm) are located within the Cascade

valleys and the lee of high volcanic peaks. There are also

two widespread precipitation minima in the lowland

areas of the ColumbiaRiver (150–240 cm) and the lee of

the Cascades (30–90 cm). The 1.33-km MM5 simulated

the seasonal precipitation within 30% of observed pre-

cipitation atmany of the precipitation gauge sites (orange

diamonds in Fig. 2b). Precipitation overprediction (bias

. 130%) is preferentially occurring just upstream

(southwest) of the Cascade foothills and in the immediate

lee of Cascades. This indicates MM5 simulations might

have some mesoscale dynamical biases, such as the

mountain wave and associated ascent shifted too far

upstream aloft and not enough subsidence in the lee.

However, because of the poor resolution of the radial

velocity data over the Cascades from the KRTX radar

over the mountain area, we are not able to detect

a clear signal.

The average wind speed, wind direction, moisture, and

moisture flux profiles of all 77 storms are shown in Fig. 3.

The MM5 overestimates the winds at SLE by 1–1.5 m s21

in a layer between 0.5 and 1 km MSL, whereas it under-

predicts the flow by about 2 m s21 above 2.5 km MSL.

This overestimated wind in the boundary layer has been

noted byGarvert et al. (2007) andHahn andMass (2009) in

their simulations of orographic precipitation storms over

the same region. The MM5 wind direction is generally 108
more subgeostrophic than observed above 2.5 km MSL,

TABLE 1. A summary of storm days [77 total, either observed or

model daily-mean precipitation larger than 0.5 in. (;1.3 cm); refer

to text for more details]. Warm storms are defined as those with

temperature at 1.5 kmMSL greater than218C, and cold storms are

thosewith temperature at 1.5 kmMSL less than218C. The number

pair denotes days (mean precipitation bias score); Fqv denotes the

integrated moisture flux. Precipitation bias scores significantly

different from zero at the 99% level using a one-tailed t test also

have the 99% confidence interval denoted.

Total storms (77) Warm storms (46) Cold storms (31)

Fqv over 12 (1.74 6 0.52) 5 (1.42)

Fqv good 33 (1.15 6 0.15) 23 (1.48 6 0.18)

Fqv under 1 (1.01) 3 (1.17)

TABLE 2. A summary of well-predicted storm days (38 in total;

refer to days with the relative absolute bias of wind speed and in-

tegrated moisture flux less than 0.2 and the absolute bias of tem-

perature less than 1 K). Numbers significantly different from zero

at the 99% level using a one-tailed t test also have the 99% confi-

dence interval denoted.

Well-predicted

storms (38)

Precipitation

bias score

Model

DR

Observed

DR

Cold storms (16) 1.57 6 0.21 0.31 6 0.08 0.19 6 0.03

Warm storms (22) 1.16 6 0.17 0.19 6 0.02 0.17 6 0.09
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but these biases are generally within the sampling un-

certainty and not significant (not shown). The combi-

nation of overestimated moisture (;8%) below 1.2 km

MSL and the overpredicted winds at low levels yields

a mean moisture flux error of about 20 g m22 s21

(;25%) around 0.8 km MSL. This average moisture

error (;8%) is larger than that at the model initiali-

zation time (;2%, not shown) and suggests that the

moisture error is either advected from over the Pacific

Ocean or developed during the model integration. The

identification of sources for this moisture bias warrants

further investigation in another study.

b. Impact of freezing level onmodel precipitation bias

The integrated moisture fluxes at SLE and downstream

orographic precipitation for the set of 77 storms are pos-

itively correlated, both within the MM5 (r2 5 0.75) and

the observations (r 2 5 0.80) (Fig. 4a). The subdivision

FIG. 2. (a) MM5 two-season total precipitation (color shaded, cm) for the 1.33-km model domain. Contour lines are terrain heights (km).

The numbers denote the observed two-seasonal total precipitation (cm). (b) Model seasonal precipitation bias score (%).

FIG. 3. (a) Total storms (77) averaged observed (black) andmodel (gray) wind speed profile. (b)As in (a), but for thewind direction. (c)As

in (a), but for the moisture (qv) and moisture flux (F ).
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of the 77 storms into warm and cold subsets yields

a slight improvement in the correlation for the warm

storms (r2 5 0.81 for both MM5 and observed) and

a decrease in correlation for cold storms (MM5 r2 5
0.54, observed r 2 5 0.77). All of these correlations are

significant at the 99% level using a one-tailed Student’s

t test. Unlike warm storms, there is a large difference in

the magnitude of correlation between moisture flux

and precipitation in the MM5 versus observed for cold

storms. This discrepancy between model and observa-

tions is a clue that some kind of model bias is occurring in

the cold storms more frequently than the warm storms.

An alternate way of describing the relationship be-

tween inflow moisture flux and precipitation is in terms

of drying ratio (Smith et al. 2005). Drying ratio is defined

here as the ratio of the precipitation fallout over the

1.33-km domain divided by the water vapor flux ap-

proaching the barrier. Precipitation fallout uses the

mean precipitation at 56 gauge stations in the domain

for both observations and model. The model domain-

mean precipitation is generally well represented by the

precipitation at 56 gauge stations, though there are

variations from storm to storm (not shown). Note that

water vapor flux is not weighted by RH so that our DR

calculation will be directly comparable with other cal-

culations made using the Smith et al. (2005) definition.

In general, drying ratio increases with decreasing tem-

peratures at 1.5 km MSL (Fig. 4b). This finding is

FIG. 4. (a) The correlation between the integrated RH-weighted moisture flux and precipitation for model (red)

and observed (black). Crosses are warm days and triangles are cold days. Solid (dashed) lines are the linear fit for cold

(warm) days. Correlation coefficients for warm, cold, and all storms are also labeled forMM5 and observation. These

correlations are significantly different from zero at the 99% level using a one-tailed Student’s t test. (b) Drying ratios

change with temperatures at 1.5 km MSL for model (red) and observation (black). Solid lines are linear fits to the

data. (c) Scatterplot between precipitation bias and the integrated moisture flux bias. (d) Scatterplot of model

precipitation bias scores and the model relative integrated moisture flux bias for the 38 well-predicted days. Black

crosses are warm days and blue crosses are cold days. The 1.0- and 1.3-bias-score lines are shown as two red dashed

lines.
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consistent with Krishbaum and Smith’s (2008) results

and reflects increased precipitation efficiency with de-

creasing temperature. Examination of the scatter in

Fig. 4b indicates a tendency for themodel to overpredict

drying ratio compared to observations, particularly for

cold storms. The cold storm drying ratio overestimates

of about 30%–50% in the model indicate that too much

water vapor is being removed as precipitation by the

model BMP. The average drying ratio for cold storms is

0.31 forMM5and 0.19 for observed (Table 2). Considering

the high correlation between moisture flux and pre-

cipitation for model and observations (Fig. 4a), it is ex-

pected that the moisture flux error is also highly related

to the precipitation error. This is generally the case

(Fig. 4c), but some storms have moisture flux and pre-

cipitation errors of different signs. This suggests that

there are other factors influencing model precipitation

error besides moisture flux error. Among the 38 well-

simulated forecasts, MM5 always overestimates pre-

cipitation for cold storms with 12 days falling into our

overprediction category with bias scores greater than

1.3 and 4 days with bias scores near 1.2 (blue crosses in

Fig. 4d). This overprediction tendency for cold storms

seems to be larger than what can be accounted for by

the lack of use of a PDA scheme and larger gauge un-

dercatchment error for cold storms.

The spatial distribution of precipitation biases (Fig. 5)

also provides supporting evidence that the overprediction

bias for cold storms is systematic across the model do-

main. The mean precipitation bias scores at gauge loca-

tions for cold storms show that the 1.33-km MM5

overpredicts precipitation by more than 50% over

a large area of the domain including valley, windward-

slope, and mountain-lee locations (Fig. 5a) resulting in

an average bias score of 1.57 (Table 2). Overprediction

at rain-only regions for cold storms (lowland in Fig. 5a)

indicates such bias is not just related to the increased

undercatchment for snow. Overprediction over such a

wide range of topography suggests some kind of sys-

tematic error in model microphysics. Warm storms, in

contrast, show a spatial pattern of biaseswith amore even

mix of overpredicted, underpredicted, and well-predicted

gauge locations (Fig. 5b), resulting in an average bias

score of 1.16 (Table 2).

c. Comparisons with radar

To relate the surface precipitation biases with cloud

and precipitation aloft, we compared model IWC with

radar-retrieved IWC and model-derived reflectivity

with observed reflectivity. The comparisons are done

over the west–east box (dashed box Fig. 1) between

SLE and Portland and extend from the Willamette

Valley to the windward slopes of Cascades. Figures 6a,c

show the average reflectivity and IWC cross sections

from theMM5 and the radar for the well-predicted cold

and warm storms (Table 2). To weight each day equally,

daily-mean reflectivities and IWC are computed first and

then averaged for the final average.

For both warm and cold storms, the observed radar

reflectivity and IWC contours (Figs. 6a,b) slope up ap-

proaching the Cascades, indicating a prominent oro-

graphic precipitation enhancement. In contrast, such

FIG. 5. (a)Model-mean precipitation bias scores for the cold well-predicted storms (16 days). (b)As in (a), but for thewarmwell-predicted

storms (22 days).
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sloping is not present in the model output (Figs. 6c,d).

In addition, the relative differences between reflecti-

vities (and IWC) in warm storms versus cold storms

differ in the observations versus the model. The ob-

served radar reflectivities are several decibels higher

within the same temperature zone in the warm storms

as compared to the cold storms. Consistently, the ra-

dar-retrieved IWC of the warm storms is about 50%

larger than that of the cold storms. In contrast, both

model-derived reflectivity and IWC are larger for the cold

storms. For example, the contours of the MM5 IWC field

for the cold storms (Fig. 6d) show a large region of

values greater than 0.15 g m23 extending from the

Cascades westward across the domain. In comparison,

IWC. 0.15 g m23 for warm storms is present only over

the Cascades in a layer near 268C. This difference in

the spatial distribution of IWC translates into model-

estimated reflectivity values for the cold storms (Fig. 6d)

of 20–30 dBZ within the 2158 to 08C layer, which are

about 5 dBZ larger than the estimated reflectivities for

the warm storms in the same temperature zone (Fig. 6c).

The high values of model IWC and derived reflectivity

FIG. 6. Mean radar reflectivities (dBZ) in the thin black dashed west–east box in Fig. 1 for (a) the 22 warm storms and (b) the 16 cold

storms. Red contours are radar-retrieved IWC. Blue and black circles are model and observed mean precipitation at stations in the west–

east box. Black dashed lines are temperatures from the SLE sounding. (c) As in (a), but for the model-derived reflectivities (color shaded)

of warm storms with IWC (red solid lines, interval is 0.05 g m23), vertical motion (black solid lines), liquid water content (blue lines,

interval is 0.05 g m23), and temperatures (black dashed lines). (d) As in (c), but for model cold storms. The black thick line denotes the

terrain heights. Reflectivities are blank for temperatures above 08C for the model and radar.
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aloft for cold storms yield a surface precipitation over-

prediction for cold storms. For example, MM5 over-

predicts by 100%–200%atmost gauge stations within the

west–east box for cold storms (blue and black circles in

Fig. 6b). Gauge undercatchment can be larger for cold

storms than warm storms and increases the over-

prediction bias for the cold storms. Surface precipitation

is better predicted for warm storms (Fig. 6a) indicating

that the model’s IWC values in warm storms are more

realistic.

We interpret that overprediction errors tend to occur

more frequently or dominate in the modeled cold storms

based on relative differences in IWC and reflectivity

values for cold versus warm storms. Modeled cold storms

have higher IWC and reflectivity values than modeled

warm storms. This relative relationship is the reverse of

the observed higher values of IWC and reflectivity in

warm storms compared to that in cold storms.

What are the reasons for the persistent and wide-

spread overprediction bias for cold storms? With an

overall well-predicted synoptic forcing and moisture

flux, such bias can still be generated by mesoscale pro-

cesses and model physics, especially the BMP. For ex-

ample, the too-deep echoes over the Willamette Valley

for modeled cold storms (Fig. 6d) might suggest some

mountain wave forcing and convective instability issues.

We propose a plausible explanation focusing on cloud

and precipitation processes. Snow depositional and rim-

ing processes are the two primary ice phase growth

mechanisms for winter orographic precipitation. The

snow depositional growth parameterization in BMPs

has large uncertainties associated with particle capac-

itance, particle size distribution, and particle mass and

fall velocity characteristics. For example, Lin and Colle

(2009) found snow aloft in the depositional growth zone

for an orographic storm was reduced by 60% when the

capacitance for aggregates instead of spheres was used.

Most BMPs include snow and graupel, but partially

rimed particles in mixed-phase orographic precipitation

systems (e.g., Rauber 1992; Woods et al. 2008) are not

well represented. This could potentially underestimate

graupel and its associated fallout in the BMP. The rim-

ing process not only impacts the precipitation efficiency

but also modifies the precipitation fallout due to the

substantially different fall speeds of snow and graupel

particles. Consequently, the supercooled water pro-

duction and the resultant riming process need to be

better represented in BMPs.

Some potential causes for the different model simu-

lation of hydrometeors aloft and surface precipitation

for warm and cold storms are explored. For both warm

and cold storms, MM5 has maximum vertical motion

near 2 km MSL over the windward slopes of the

Cascades (Figs. 6c,d). For the cold storms (mean freezing

level near 1 km MSL), three associated factors combine

to produce large values of snow (up to 0.25 g m23) above

the windward slopes at 2-km altitude. First, temperatures

(of about2108C)within the ascent region for cold storms

(Fig. 6d) favor snow depositional growth (Rogers and

Yau 1989). Second, a snow depositional growth param-

eterization with a positive bias tends to induce snow

overprediction aloft (Lin and Colle 2009). Last, there is

a positive feedback cycle as larger snow values further

enhance snow depositional growth since snow deposi-

tional growth increases with snow amount. In contrast,

for the warm storms (mean freezing level near 2 km

MSL; Fig. 6c), the maximum upward motion is at tem-

peratures near 08C. This increases cloud liquid water

generation and favors riming growth and graupel pro-

duction. Cloud water is as high as 0.2 g m23 in the ascent

regions of the warm storms. The larger fall speed of

graupel compared to snow results in more efficient IWC

fallout where riming is active. As a result, less IWC re-

mains aloft where abundant supercooled cloud water

exists. Overall, an overestimated snow depositional

growth has a larger impact on cold storms than on warm

storms because of the larger contribution of snow de-

positional growth to the total surface precipitation for

cold storms.

Snow overprediction aloft has been noted in several

orographic precipitation case studies using different BMPs

(Garvert et al. 2005b; Lin and Colle 2009; Milbrandt et al.

2010). The results from this study suggest that the over-

estimated IWC aloft for cold storms is occurring over

many events, and it is likely from some systematic bias

associated with ice microphysical processes, such as snow

depositional growth, within the BMP.

4. Discussion and summary

Two cool seasons of high-resolution MM5 simula-

tions over the Pacific Northwest were evaluated using

precipitation gauge data, an upstream sounding, and

an NWS WSR-88D. The model could realistically simu-

late the seasonal precipitation generally within 90%–

130% of the observed values over most of the rain gauge

sites (Fig. 2b). In concurrence with previous studies, for

the seasonal set of 77 storms, there is a high correlation

between moisture flux and surface precipitation in both

the observed (r25 0.80) and modeled storms (r25 0.75).

As a result, model precipitation error typically increases

with increasing moisture flux error.

The 77 storm days were partitioned into warm storm

(freezing level above the Cascades crest) and cold storm

(freezing level below the Cascades crest) categories.

Drying ratios were about 30%–50% higher for the
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model compared to observations for the cold storms.

These systematically higher drying ratios for MM5 in-

dicate that too much water vapor is being removed as

precipitation in the cold storms. The simulated pre-

cipitation for the cold stormswas less correlated with the

moisture flux (r2 5 0.54) than was the observed (r2 5
0.77), which is likely a consequence of the surface pre-

cipitation overprediction in the model for the cold

storms. In contrast, both the model and observed values

had a good correlation between precipitation and

moisture flux for the warm storms (r2 5 0.81), and there

was less widespread precipitation overprediction in the

model for warm storms.

The well-simulated subset of storms (38 cases), those

with errors less than 20% in wind speed and moisture

flux and a temperature bias less than 1 K, were also

separated into warm and cold storm categories in order

to better understand the underlying physics. Unlike the

22 well-simulated warm storms, the 16 well-simulated

cold storms overestimated precipitation at gauge locations

across the Willamette Valley and the windward and lee

slopes of the Cascades within the model domain. Con-

sistent with surface precipitation overprediction for the

cold storms, MM5 has larger reflectivity and IWC aloft

than the observed radar reflectivity and retrieved IWC. In

contrast, for warm storms, MM5 has better agreement

with the radar in terms of both reflectivity and IWC,

which translates into a better prediction of surface pre-

cipitation. Observed radar reflectivity and IWC is larger

for the warm storms than for the cold storms, but model

reflectivity and IWC is larger for the cold storms than for

the warm storms. One possible reason for the persistent

overprediction of surface precipitation and IWC aloft for

the cold storms might be related to a potential positive

bias of the snow depositional growth formulation in the

BMP. An additional amplification to the overprediction

of IWC aloft within the modeled cold storms is the jux-

taposition of the upward motion associated with the

mountain wave and air temperatures favorable for snow

depositional growth. Other mesoscale processes, such

as convective cells and shear, may also contribute to the

noted model bias and warrant further investigation.

This analysis also highlights the benefit of using three-

dimensional data from an operational radar in addition

to surface gauge measurements for model precipitation

evaluation over mountainous terrain.

There have been several recent efforts to improve

BMPs for mesoscale models (e.g., Woods et al. 2007;

Morrison and Grabowski 2008, 2010; Dudhia et al. 2008;

Lin and Colle 2011). The abrupt transition from snow to

graupel in some BMPs neglects the abundance of par-

tially rimed particles in mixed-phase clouds. Lin and

Colle (2011) proposed a new BMP that includes a

gradual change from snow to graupel and thus repre-

sents the partially rimed particles. A reduced snow de-

positional growth rate appropriate for aggregates and

inclusion of partially rimed particles might help improve

the noted systematic overprediction bias for the cold

storms. Future work will involve using WRF with some

other BMPs in this region to determine generality of our

results.

Large samples of storms help the detection of relatively

robust model precipitation biases. This study is a prelimi-

nary effort toward this direction.Nevertheless, precipitation

simulation involves various interacting dynamical and

physical processes, and it is a challenge to identify and

quantify the sources of precipitation bias. Focusing on cer-

tain types of storms enables us to narrow down the possible

paths contributing to precipitation bias. Future work

includes utilizing other available observations, such as

integrated water vapor from a global positioning system

(GPS), to better quantify the model moisture bias

development.
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