
1. Introduction
Numerical weather prediction (NWP) models involve a suite of physical parameterizations, including con-
vection, microphysics, land surface, boundary layer, and radiation schemes. The joint interactions among 
these parameterizations often yield difficulties in diagnosing sources of error within a model (e.g., Bu 
et al., 2017; Caron & Steenburgh, 2020; Fovell et al., 2010). The National Oceanic and Atmospheric Admin-
istration (NOAA) National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) 
and the High-Resolution Rapid Refresh (HRRR) models undergo a detailed testing and verification process 
before new operational versions are released (e.g., EMC Model Evaluation Group, 2019; EMC Model Eval-
uation Group, 2020a, 2020b). NCEP's verification process focuses on aggregate statistics at the hemisphere, 
conterminous United States (CONUS), or CONUS subregion scales and uses case studies to illustrate specif-
ic model strengths and weaknesses. For example, NCEP has documented a cold bias of ∼0.5°C in CONUS 
East and 0.7°C in CONUS West within the GFS v15 at ∼36 h that increases in magnitude with lead time 
(EMC Model Evaluation Group, 2020a).

We use a relational database to facilitate analyses for specific forecasts and observed conditions. Examina-
tion of hourly model output across the diurnal cycle combined with conditioning on specific weather condi-
tions provides a robust test of several aspects of model physics and aids error diagnosis by constraining con-
ditions when the errors occur. Currently, publicly accessible evaluations of the NOAA models (e.g., EMC 
Model Evaluation Group, 2019; EMC Model Evaluation Group, 2020a, 2020b) and the European Center for 
Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (e.g., Haiden et al., 2021) do 
not utilize conditional analysis of model errors. We show that examining model temperature errors by sim-
ilar weather conditions provides substantial additional value to diagnosing model inadequacies.
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Our verification methodology compares the model forecasts to observations, not to reanalyses. A key weak-
ness of reanalyses is that their accuracy is less well understood than the uncertainties in observations (Park-
er, 2016). Data assimilation methods often weigh observations less when they differ more from the model's 
solution (e.g., Houtekamer et al., 2005). Hence, uncertainties in reanalysis products are likely larger in lo-
cations and in weather conditions where numerical forecast models struggle, the very set of circumstances 
where information is most critical for model evaluation and refinement. The downside of using observa-
tions is that they are not available everywhere. If a certain bias is present throughout much of the United 
States, it is more likely to be the result of a model physics weakness than an observation issue.

2. Data and Methods
Data from Automated Surface Observing System (ASOS) sites and GFS and HRRR models are compared 
for the period of November 1, 2019 to March 31, 2020. Use of this 5-month season constrains characteristics 
such as number of daylight hours and land surface conditions. ASOS observations and matched model 
point data are stored in a MySQL relational database, which allows for easy querying of the data for analysis 
and requires much less space than storing the full model gridded files. For matching to model output, we 
use the following observed meteorological variables: 2-m temperature, 10-m wind speed, and sky condition. 
For each ASOS site, we obtain the corresponding GFS and HRRR model values of 2-m temperature, 10-m 
wind speed, and snow depth at each model run's set of valid times and lead times.

2.1. Observations

We used hourly Meteorological Terminal Air Reports (METAR) from 210 ASOS sites at airports in the CO-
NUS to compare to model output. After data processing and quality control, variable values for each airport 
are uploaded to the database. The top-of-the-hour observations (i.e., no special observations) are compared 
to the model forecast valid at that hour. When the magnitude of the model temperature error was greater 
than 20°C, that specific forecast hour and observation pair is not used in the analysis even though that point 
passed NOAA's Meteorological Assimilation Data Ingest System (MADIS) quality control and our ingest 
determined the temperature value to be physically plausible (i.e., within range of temperatures observed 
on Earth's surface). Sky cover conditions are delineated by ASOS as CLR E  5%, 5%  E   FEW  E   25%, 25%  E   SCT  

E   50%, 50%  E   BKN  E   87%, and OVC  E   87% (NOAA, 1998). We utilize this information to group cloudiness 
conditions into All conditions ( E  100% cloud cover, includes OVC, BKN, SCT, FEW, and CLR), E  50% cloud 
cover (includes SCT, FEW, and CLR), E  25% cloud cover (includes FEW, and CLR), and E  5% cloud cover 
(includes CLR).

The specific location chosen for each airport site was the approximate center of the airport property. This 
was a compromise between the ASOS site and the other associated sensors used to make meteorological 
measurements at different points across the airfield (NOAA, 1998). Choosing a central location accounts for 
the unknown variation in exact locations used for measurements. For example, an airport may have mul-
tiple wind sensors but only report the value from the active runway. For 201 out of the 210 airport sites, we 
found the approximate center of the airport property to be within 2 km of the ASOS station. For the other 
nine airports, the ASOS site was within 3 km of the airport's center.

2.2. Model Output

2.2.1. GFS

We used the operational versions of NOAA's GFS model for analysis. GFS v15.1 changed to v15.2 on Novem-
ber 7, 2019 at 1200 UTC (Maxson, 2019), so we used GFS v15.1 before November 7, 2019 at 1200 UTC and 
GFS v15.2 after. The absence of any major model changes with this update (Maxson, 2019) allows the entire 
date range to be analyzed in aggregate. All GFS initialization times (0000, 0600, 1200, and 1800 UTC) were 
ingested into the database. We used the hourly GFS output for forecast hours 1 to 120. Since no long-term 
archive of the hourly output was known to exist, our own archive had to be created using the rolling 30-day 
archive on Amazon Web Services (AWS).
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The 0.25° gridded GFS data were downloaded from the NOAA AWS cloud, which is part of their Big Data 
Program. Spatial linear interpolation is used to obtain model values within the 0.25° grid boxes at the 210 
airport sites. The coarse resolution can yield mismatches between actual and modeled surface types for 
airports with runways adjacent to water. For example, the New York airports JFK and LGA are classified as 
water surface type rather than land.

2.2.2. HRRR

We compared the HRRR v3 (NOAA, 2020) to the GFS from November 1, 2019 to March 31, 2020 for fore-
cast hours 0 to 36 based on the 0000, 0600, 1200, and 1800 UTC initialization times. Since the effective grid 
length in this model is ∼3 km (NOAA, 2020), the nearest model grid point was chosen as being represent-
ative of the conditions at each of the airport sites. HRRR grids were downloaded from the University of 
Utah's HRRR archive (Blaylock et al., 2017), and data at the nearest grid point to the 210 airports were used 
to populate the database for this study.

2.3. Diurnal Cycle

To address the diurnal cycle of temperature errors, we examine hourly data at the time of the winter cli-
matological daily low and high temperatures at 7 a.m. and 3 p.m. local standard time (LT), respectively. 
We approximate 7 a.m. and 3 p.m. LT using longitude bands: Eastern time between 67.5°W and 82.5°W as 
1200 UTC and 2000 UTC, Central time between 82.5°.W and 97.5°W as 1300 UTC and 2100 UTC, Mountain 
time between 97.5°W and 112.5°W as 1400 UTC and 2200 UTC, and Pacific time between 112.5°W and 
127.5°W as 1500 UTC and 2300 UTC.

The local times of the climatological daily low and high temperature often do not coincide with the four 
times a day where exact 36-h forecasts exist. We select among the 31–36 h forecasts, picking the one closest 
to but less than the target time. The target time is the daily low or high temperature for each location (as in 
Table 1 and Figure 1), or a specific UTC hour (as in Figure 2). Since we use forecasts initialized every 6 h, a 
target time of 0100 UTC corresponds to a lead time of 31 h, 0200 UTC to 32 h, 0300 UTC to 33 h, 0400 UTC 
to 34 h, 0500 UTC to 35 h, and 0600 UTC to 36 h. This pattern is repeated every 6 h. For brevity, we call all 
of these a 36-h lead time.

2.4. Cloud Cover and Wind Conditions

We condition the data on observed weather conditions to determine the dependence of temperature errors 
on cloud cover amount, winds, and snow cover. Our initial analysis uses all observed sky conditions and 
wind speeds to compare our results with NOAA's. We then perform a conditional analysis using observed 

E  50%, E  25%, and E  5% sky cover. Observed low 10-m wind speeds ( E  2.57 m/s or 5 kt) are also used. We use 
five knots as our low wind speed threshold since below five knots, ASOS wind directions are not reliable 
(NOAA, 1998).

All conditions E  50% cloud cover E  25% cloud coverE  5% cloud cover

GFS Day (3 p.m.) −1.3°C  E   0.1 −1.9°C  E   0.1 −1.9°C  E   0.1 −1.8°.C  E   0.1

GFS Night (7 a.m.) 0.0°C  E   0.1 1.0°C  E   0.1 1.1°C  E   0.1 1.2°.C  E   0.1

HRRR Day (3 p.m.) 0.2°C  E   0.− −0.6°C  E   0.1 −0.5°C  E   0.1 −0.5°C  E   0.1

HRRR Night (7 a.m.) −0.5°C  E   0.1 0.1°C  E   0.1 0.2°C  E   0.1 0.2°C  E   0.1

Note. Data are for the time of the diurnal high temperature (3 p.m. LT) and diurnal low (7 a.m. LT). Uncertainty 
estimates are sample standard deviations of the mean errors.

Table 1 
Average Conterminous United States (CONUS) Temperature Errors for the Global Forecast System (GFS) and High-
Resolution Rapid Refresh (HRRR) Models for Different Cloudiness Conditions at 36-h Lead Time
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3. Results
Our analysis yielded a GFS daily average cool temperature bias based on the airport locations of −0.7°C 
at 24 h increasing in magnitude to −0.9°C at 120 h, which closely matches the daily average biases found 
by NCEP (EMC Model Evaluation Group, 2020a) (not shown). We more closely examine the daily average 
biases in surface temperatures within the GFS and HRRR over CONUS at 36-h lead time for the 210 airports 
in our relational database (Figure 1). To help diagnose conditions when these biases are more frequent, we 
examine biases at the times of the climatological low and high temperatures (7 a.m. and 3 p.m. LT). Table 1 
shows the clear diurnal variation in average CONUS temperature errors within GFS for all conditions, with 

Figure 1. Conterminous United States (CONUS) map of 210 airport sites showing the magnitude and sign of 36-h lead 
time temperature biases (model-observation) with conditions of E  50% cloud cover (a–d) and E  25% cloud cover (e–h) at 
the times of the winter climatological daily low temperature 7 a.m. LT (c, d, g, and h) and the daily high temperature 
3 p.m. LT (a, b, e, and f). Red shading indicates the model is too warm, and blue shading indicates the model forecast 
is too cold in the November 1, 2019 to March 31, 2020 time frame. Marker sizes depict sample sizes used in mean bias 
calculations.
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a bias at 3 p.m. LT of −1.3°C. The HRRR has a bias of ∼−0.5°C for the nighttime-low and a slight warm bias 
during the daytime-high for all conditions.

We examined various weather conditions to determine circumstances where stronger biases were more 
likely to occur. We found that 7 a.m. LT warm biases were usually larger in conditions with less cloudiness 
for both the GFS and HRRR. Figure 1 shows the average model biases at 36-h lead time for the subset of 
conditions when E  50% cloud cover and when E  25% cloud cover is observed for each airport. For the E  50% 
cloud cover subset of data, the CONUS average 7 a.m. LT temperature bias in the GFS is 1.0°C compared to 

Figure 2. Distribution of temperature errors (model minus observed) for conditions with observed E  50% cloud 
cover during the 36-h lead time by time of day for (a, and b) Detroit, MI, (c and d) Oklahoma City, OK, and (e and 
f) Minneapolis, MN. Errors in the global forecast system (GFS) are shown in the left column (in a, c, and e) and the 
high-resolution rapid refresh (HRRR) errors are shown in the right column (in b, d, and f). The approximate time 
of the daily low temperature (7 a.m. LT) is indicated by the vertical dash-dotted line, and the approximate time of 
the daily high temperature (3 p.m. LT) is indicated by a vertical dashed line. Dark beige shading extends from the 
25th to 75th percentiles with the median indicated by the solid black line. Light beige shading spans the 5th to 95th 
percentiles. Minneapolis, MN (MSP) data (in e and f) were further restricted to hours with forecast snow cover. Sample 
size distributions vary by location and time of day. Median hourly sample sizes were Oklahoma City, OK (OKC) = 65, 
Detroit, MI (DTW) = 29, MSP-GFS = 36, and MSP-HRRR = 30.
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0.1°C for the HRRR (Table 1). When the data for E  50% cloud cover are further conditioned for low winds ( 
E  2.57 m/s or 5 kt), the CONUS average 7 a.m. LT low temperature error increases to 1.7°C for the GFS and 

increases to 0.6°C for the HRRR (not shown). Strong nocturnal inversions are typically associated with con-
ditions of low sky cover and light winds (Ahrens & Henson, 2019). The spatial pattern of temperature errors 
is very similar between conditions for E  50% cloud cover and E  25% cloud cover. At individual airports, some 
of the error magnitudes are higher for E  25% cloud cover (Figure 1, Table 1).

At the approximate time of the high temperature (3 p.m. LT), the spatial patterns of errors are markedly dif-
ferent between the GFS and HRRR. There is a GFS cold bias at a 36-h lead time in conditions of E  50% cloud 
cover (Figure 1a), with a CONUS average of −1.9°C (Table 1). At the time of the daytime high, for periods 
with E  50% cloud cover, the HRRR tends to have a cold bias east of the Great Plains and a warm bias to the 
west (Figure 1b). The HRRR also tends to have a slight cool bias at 7 a.m. LT for coastal sites. Some of the 
largest cold biases in the GFS and warm biases in the HRRR are at airport locations in the Intermountain 
West.

Comparison of diurnal high (3 p.m. LT) and diurnal low (7 a.m. LT) temperatures indicate a strong diur-
nal cycle of temperature errors under conditions of E  50% and E  25% sky cover in the GFS. These biases are 
present throughout much of the United States, making it unlikely they are solely the result of a mismatch 
between model terrain and ASOS station elevations, which would be more prevalent in mountainous re-
gions. In their analysis, Fovell and Gallagher (2020) found that elevation error had essentially no association 
(r  E   0.08) with temperature bias in the HRRR once sites with large elevation discrepancies ( E  80 m) were 
removed.

Further details on the hour-by-hour temperature errors for conditions of E  50% sky cover are shown in Fig-
ures 2a–2d for Detroit, MI (DTW) and Oklahoma City, OK (OKC), which are representative of many other 
airports across the US that are distant from mountainous terrain. In the GFS, after sunset ( E  0000 UTC) the 
temperature errors trend warmer overnight until the time of the climatological daily minimum temperature 
(Figures 2a and 2c). Once the sun comes up, the sign of the error switches to negative (cool bias) during the 
day. For OKC, the GFS temperatures are approximately 3°C too high at night and 1°C too low during the 
day. In contrast, the errors in the HRRR do not yield much of a diurnal cycle in conditions with E  50% cloud 
cover (Figures 2b and 2d). Specifically, the median bias throughout the entire day in the HRRR is close to 
0°C for both OKC and DTW.

The spatial pattern of errors at 7 a.m. LT when observed cloud cover is E  50% in the GFS indicates that some 
airports in the northern tier of the US have cold biases (Figure 1c). We considered the role of model snow 
cover in these errors by extracting the subset of data with an observed cloud cover of E  50% and a model 
forecast of least a 1-cm snow depth (i.e., snow already on the ground). ASOS does not automatically record 
snow cover as it is typically augmented by a human observer at select airports (NOAA, 1998). Based on 
webcam footage, we found that if the model indicated snow depth E  1 cm, then snow cover was usually ob-
served. We examined the full diurnal cycle of errors in Minneapolis, MN (MSP), Sioux Falls, SD (FSD), and 
Aberdeen, SD (ABR) during conditions of cloud cover E  50% and snow on the ground and found cold biases 
at all times of day in both the GFS and the HRRR. The data for MSP are shown in Figures 2e and 2f, which 
indicates a larger median cold bias at 3 p.m. LT in the GFS (−3.6°C) compared to the HRRR (−1.7°C). Based 
on these findings, we speculate that some interactions between the snow-covered surface and near-surface 
temperatures within the models are not being simulated properly.

4. Discussion and Summary
Accurate forecasts in conditions of low sky cover have important practical applications. Errors of a few 
degrees in forecasts for temperatures near 0°C are especially impactful for aviation and road transportation 
(e.g., Ballesteros & Hitchens, 2018). Surface overnight low temperatures in winter are crucial for predicting 
frost formation and morning commute road conditions. Daytime high temperatures in conditions of low 
sky cover are important for predicting to what extent existing snow and ice will melt. Additionally, planning 
for de-icing operations for roads and at airports benefits from 36-h or more lead times.
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By conditioning the NWP model error analysis on various cloud cover and wind speed conditions and times 
of day, we have revealed some major systematic issues in the GFS temperature forecasts that are not as ob-
vious in CONUS daily averages or in case studies. In particular, the GFS struggles to adequately represent 
the diurnal cycle of temperatures at 36-h lead times under the mundane condition of E  50% cloud cover. 
Typically, the GFS is too warm at 7 a.m. LT by 1°C and too cool at 3 p.m. LT by almost 2°C. Overnight errors 
grow in magnitude when the E  50% cloud cover subset of data is further conditioned by low wind speeds for 
both the GFS and HRRR. The strong diurnal cycle in errors needs to be considered when making further 
model improvements. Otherwise, a parameterization refinement indicating an improvement only in daily 
averages may produce degraded accuracy at different times of the day.

The HRRR does a better job representing the diurnal cycle for E  50% cloud cover conditions and has smaller 
errors overall at 36-h lead times. There are regional patterns in HRRR errors, including a daytime-high cool 
bias in the eastern US, a daytime-high warm bias in the western US, and a nighttime-low cool bias at many 
coastal sites, that merit further investigation. Fovell and Gallagher (2020) document a warm bias in HRRR 
2-m temperature forecasts for 89% of sites located more than 500 m above sea level. Many sites in the Inter-
mountain West are above 500 m in elevation, so their finding is consistent with our observed warm bias in 
the HRRR during the day and night under clear skies in that region.

Examining errors by similar weather conditions on many days, rather than simple date ranges, helps con-
strain the portion of model physics in which larger forecast errors are more likely to occur. Strong nocturnal 
radiation inversions are more common under conditions of light winds and fairly clear skies (Ahrens & 
Henson, 2019). The pronounced nocturnal warm bias under E  50% cloud cover worsens when observations 
are further conditioned by low wind speeds. These findings strongly suggest a deficiency in representing 
nocturnal temperature inversions, which require interactions among radiation, boundary layer, and land 
surface parameterizations, for the Unified Forecast System medium-range physics used in GFS v15.

While the results presented here address only temperature errors, we demonstrate the utility of examining 
the diurnal cycle of model errors and conditioning model verification on weather characteristics to identify 
specific conditions when NWP model errors are larger. A model's ability to accurately represent diurnal 
variability is a robust test of model physics. Resources for model refinement are limited. These types of anal-
yses can aid in targeting investigations of error sources and revisions to physics packages to ensure models 
produce the right answer for the right reasons.

Data Availability Statement
A rolling 30-day archive of GFS model output is available from NOAA via Amazon Web Services at https://
noaa-gfs-bdp-pds.s3.amazonaws.com/index.html. The operational GFS version was used, which is version 
15.1 before November 7, 2019 at 12 UTC and version 15.2 after. HRRR v3 model (NOAA, 2020) output is 
available through the University of Utah's HRRR archive (Blaylock et al., 2017). The operational HRRR ver-
sion 3 was used in this analysis. METAR data are archived within the NOAA MADIS system (https://mad-
is.ncep.noaa.gov/index.shtml). NOAA maintains an archive of MADIS data, available at ftp://madis-data.
ncep.noaa.gov/archive/. Netcdf files of METAR are indexed using the following format: ftp://madis-data.
ncep.noaa.gov/archive/yyyy/MM/dd/point/metar/netcdf/ where yyyy is the four digit year, MM is the two 
digit month, and dd is the two digit day. The Open Science Foundation archive at https://doi.org/10.17605/
OSF.IO/YTHR2 contains the data presented in figures as csv files and the model and observational data 
used in the analysis as Parquet files.
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