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SUMMARY

Raindrop size distribution data obtained from two Joss–Waldvogel disdrometers located at Locarno-Monti,
Switzerland during the Mesoscale Alpine Programme (MAP) Special Observation Period are analysed to obtain
appropriate relationships of radar re� ectivity, Z, with both water content, W , and surface rainfall, R, for use
in MAP applications. The disdrometer data are accumulated into 10-minute samples to reduce sampling error
associated with the »1 m3 sample volume of the instruments. Based on previous studies, relations of the form
W D qZ.4=7/ and Z D aR1:5 are assumed and the coef� cients q and a are estimated from the data. The combined
dataset of 10-minute samples from the two disdrometers and the 10-minute data divided into two independent
subsets yielded similar mean values of the coef� cients. The recommended relationships are W D 3:4Z.4=7/ and
Z D 216R1:5 . The uncertainties in these mean relationships as expressed in terms of §1 standard deviation are
approximately equivalent to a §4.4 dBZ error for the Z–W relationship, and to a §2.4 dBZ error for the Z–R
relationship.

KEYWORDS: Disdrometer Mesoscale Alpine Programme Radar meteorology Raindrop size
distribution Sampling errors

1. INTRODUCTION

Maps of near-surface rainfall are important in understanding the water cycle of
a region and in applications such as � ood forecasting, fresh-water management, and
detection of climate change. Scanning weather radars yield maps of radar re� ectivity (Z)
which can be used to estimate surface rainfall (R). The relationship between measured
Z and R is complex and the estimation procedure is subject to several independent
sources of error (Austin 1987; Joss and Lee 1995). The geometry of the radar beam
leads to the radar’s measurement of re� ectivity to be made 100s to 1000s of m above the
surface. Biases in the estimate of the near-surface re� ectivity of rain can result from the
following: vertical variation of re� ectivity in the storm between the measurement several
km above the surface and the surface; errors in radar calibration; non-meteorological
echoes such a ground clutter and anomalous propagation; attenuation; and the presence
of non-rain hydrometeors such as graupel, hail, and melting snow. These potential
sources of bias can be removed or minimized by established methods†. For the purposes
of this paper, we will assume that such procedures are utilized. We will focus on the
relatively smaller magnitude biases in the mapping of Z to R (Joss and Lee 1995)
associated with variations in the raindrop size distribution (RDSD).

An estimate of three-dimensional liquid-water content (W ) of a storm volume can
be obtained when radars scan several elevation angles to obtain a three-dimensional
volume of radar re� ectivity. In this context, the liquid-water content is more precisely a
rain-water content since it does not include cloud drops to which the radar is insensitive.
Volumetric liquid-water content derived from radar re� ectivity can be useful in the
initialization and validation of numerical models, and in studies utilizing aircraft in situ
data. The Z–W estimation procedure has all the sources of error associated with the

¤ Corresponding author: Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre,
Weßling, Germany. e-mail: martin.hagen@dlr.de
† See Joss and Lee (1995), Joss et al. (1998), Vignal et al. (2000), and Germann and Joss (2002) for detailed
discussion of these methods as they are applied by MeteoSwiss to operational radar data.
c° Royal Meteorological Society, 2003.
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estimation of R except for the vertical variation in Z since a transformation to near-
surface values is not required.

During the Mesoscale Alpine Programme (MAP) Special Observing Period (SOP)
(Bougeault et al. 2001), the RDSD within orographic precipitation was measured using
two disdrometers deployed at the MeteoSwiss Osservatorio Ticinese in Locarno-Monti,
Switzerland. These data are analysed to estimate appropriate Z–R and Z–W relations
for the SOP.

2. DATA

A disdrometer measures drop size distribution by counting the number of drops
within each of several size categories over a time interval. We used two Joss–
Waldvogel disdrometers (Joss and Waldvogel 1967; Waldvogel 1974), one operated
by the Deutsches Zentrum für Luft- und Raumfahrt (DLR) Institut für Physik der
Atmosphäre and one operated by the University of Washington (UW). The UW in-
strument is the standard RD-69/ADA-90 instrument. The DLR instrument combines
the RD-69 and a custom built RDSD analyser. The Joss–Waldvogel disdrometer is
an electro-mechanical instrument. The momentum of a raindrop falling at its terminal
velocity on a styrofoam cone with area 50 cm2 is converted to an electrical impulse.
The amplitude of this impulse is proportional to the diameter of the raindrop. The in-
struments utilize 20 size categories to measure drops. Speci� c size categories are from
»0.3 mm to »5 mm diameter for the UW disdrometer and »0.5 mm to »5 mm for the
DLR disdrometer. Drops smaller than »0.3 mm do not produce an impulse suf� ciently
above the noise level. Larger raindrops are all grouped into the last of the 20 classes.
The mean diameter of this 20th size category, which represents the drops larger than a
particular size, has the largest uncertainty compared to the other 19 size categories which
have both minimum and maximum diameter limits. The size categories for the DLR
disdrometer were calibrated by measuring the transfer function of the signal-processing
electronics (Sheppard 1990). The UW disdrometer used the factory calibration and stan-
dard diameter categories supplied by the instrument manufacturer, Distromet Inc.

At higher rainfall rates, the detection ef� ciency for small drops in the Joss–
Waldvogel disdrometer is reduced compared to that at lower rainfall rates due to the
generation of environmental noise by the rain itself. Environmental noise and man-made
noise, when present, increase the noise level in the instrument below which drops cannot
be detected (Joss and Gori 1976).

A short ‘dead-time’ is built into the instrument so that splashes associated with the
impact of a large drop on the sensor are not counted as small drops within the RDSD.
However, during this dead-time, neither splash products nor actual drops in the RDSD
are measured. In order to account for the drops in the RDSD that were missed, a dead-
time correction is applied which is a function of the number and size of drops counted
by the instrument (Sheppard and Joe 1994). The main effect of the dead-time corrections
is to increase the number of small drops within the distribution, since small drops are
more numerous than larger drops and hence more likely to fall within the short dead-
time period. The dead-time correction is designed to correct within §10% both for drops
missed during the dead time of the instrument and for environmental noise due to rain
(Joss and Gori 1976). The correction is not designed to account for missed drops due to
an increase in the noise � oor as a result of man-made noise, or for drops not hitting the
instrument because of wind effects (Folland 1988).

As a data quality check, both disdrometers were compared to a nearby Me-
teoSwiss rain-gauge. Table 1 shows the daily rainfall accumulations computed from the
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TABLE 1. DAILY SUMS OF PRECIPITATION MEASURED WITH THE
RAIN-GAUGE AND TWO DISDROMETERS DLR AND UW

Date Gauge DLR DLR UW UW
(1999) (mm) (mm) within 10% (mm) within 10%

20 Sep 92.0 97.7 Y 43.8 incomplete
21 Sep 46.0 44.1 Y 42.8 Y
25 Sep 87.6 84.4 Y 88.4 Y
26 Sep 130.5 126.4 Y 73.2 incomplete
27 Sep 30.0 31.9 Y 30.9 Y
28 Sep 65.9 62.1 Y 62.0 Y
30 Sep 21.6 21.3 Y 21.7 Y
02 Oct 17.7 18.1 Y 19.0 Y
03 Oct 64.7 61.6 Y 61.7 Y
17 Oct 0.0 0.2 0.2
18 Oct 0.6 0.8 0.8
19 Oct 0.7 0.8 0.9
20 Oct 13.6 13.0 Y 13.7 Y
21 Oct 53.9 50.0 Y 36.5 incomplete
22 Oct 6.2 4.8 7.1
23 Oct 47.8 45.1 Y 46.7 Y
24 Oct 40.7 38.9 Y 42.5 Y
25 Oct 17.8 17.8 Y 18.6 Y
26 Oct 0.3 0.3 Y 0.3 Y
30 Oct 1.0 1.0 Y 1.1 Y
03 Nov 5.9 4.9 5.2
04 Nov 29.2 26.4 Y 27.2 Y
05 Nov 1.2 1.3 1.3 Y
06 Nov 50.5 47.5 Y 49.8 Y
10 Nov 0.0 0.1 0.1
11 Nov 8.1 17.9 Y 18.3 Y
14 Nov 6.8 6.5 Y 6.6 Y
15 Nov 2.9 2.9 Y 3.2 Y
17 Nov 8.0 7.9 Y 7.9 Y
18 Nov 0.7 0.0 0.0
Total 861.9 835.6 731.2

Total for 585.5 561.5 577.8
complete days

Y indicates days where the disdrometer is within 10% of the daily rainfall
measured by rain-gauge. Totals are indicated for the full set of processed
data obtained from each instrument and for the subset corresponding to the
complete days for all three instruments.

MeteoSwiss rain-gauge and the two disdrometers. A total of 862 mm was recorded by
the rain-gauge between 20 September and 19 November 1999. Overall, the instruments
agreed well. Rain accumulations for both disdrometers were within 10% of the rain-
gauge for all days with rainfall over 10 mm. For the four days with less than 1 mm
rainfall measured by the disdrometers, the difference among the instruments was less
than 0.2 mm. The measurement accuracy of the MeteoSwiss rain-gauge is 0.1 mm, cor-
responding to the rainfall associated with a single tip of this tipping-bucket type gauge.
On 18 November 1999, the disdrometer-observed rain rates never exceeded 0.2 mm h¡1

so these data were removed from the processed dataset (section 3(d)). The discrepancies
among the instruments on 22 October and 3 November are still under investigation, but
are likely to have some contribution from the 0.2 mm h¡1 rain-rate threshold applied to
the disdrometer data. The incomplete records from the UW disdrometer were the result
of a computer rather than an instrument problem.
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3. METHODOLOGY

The analysis of RDSD data collected by disdrometer must take into account the
degree of representivity of the measurements in terms of their location and scale, and
address statistical sampling error.

(a) Representivity of location
Locarno-Monti was within the Laggio-Maggiore Target Area (LMTA) of focused

observations designed to address the precipitation-related objectives of MAP (Bougeault
et al. 2001) and is near a climatological local maximum of heavy precipitation in the
southern Alps (Frei and Schär 1998). Locarno-Monti received 30 days of rainfall during
the period 20 September to 18 November 1999 within a variety of synoptic conditions
(Bougeault et al. 2001), and was near the centre of the maximum rainfall accumulation
during the MAP Intensive Observation Period (IOP) 2b event on 19–20 September 1999
(Rotunno and Ferretti 2003). The details of the rainfall distribution varied within the
LMTA, so one location cannot be exactly representative of other locations within the
LMTA or of the LMTA area mean.

(b) Representivity of spatial-scale
The spatial-scale of the recorded 1-minute disdrometer measurements is order 1 m3.

The spatial-scale of the radar measurements to which they are intended to be applied is
»1 km3. The order 109 difference in spatial-scales is staggeringly large. It would take
over 1902 years for a single disdrometer to measure a volume of atmosphere equivalent
to a typical individual radar-resolution volume. To date, all in situ measurements of
the RDSD via either aircraft particle probes or surface-based disdrometers have had a
sampling volume of 10 m3 or less. Without instantaneous in situ observations at larger
scales, it has been dif� cult to assess how well the variability of the RDSD in time
represents its variability in space or how well averaging in time represents averaging
in space.

Joss and Gori (1978) examined the characteristics of the RDSD over increasing
time periods within two storms at Locarno-Monti, and found that after several hundred
minutes the characteristics of the RDSD tended to converge toward an exponential
distribution. A single instrument sample over 100s of minutes in duration is obtained
within several different portions of the storm, and is possibly a result of several different
precipitation processes. Joss and Gori (1978) recognized this limitation. They concluded
that ‘true exponential distributions are obtained when adding many 1-minute samples
of different rain intensity’. They also found that the rate of change of the RDSD
shape was not constant but varied approximately with the natural logarithm of the
accumulation time. For example, the relative difference in average shape of the RDSD
between samples for 1- and 10-minute accumulations was larger than between samples
for 11- and 20-minute accumulations. In their examination of the degree of uniformity
of precipitation processes, Kostinski and Jameson (1997) analysed disdrometer time
series data and found »10-minute duration rain ‘patches’ with a similar number of
drops of a given size per minute. They described the RDSD at larger scales that would
incorporate multiple rain ‘patches’ as mixtures of Poisson distributions (Jameson and
Kostinski 2001).

(c) Sampling error
Smith et al. (1993) modelled sampling errors in a normalized exponential RDSD

as a means to assess the relative contributions of sampling uncertainties versus natural
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inhomogenities to the apparent variability of in situ RDSD measurements. They found a
consistent low bias in estimates of R and Z that decreased as the total number of drops
in the sample increased. The low bias is a result of the mismatch between the typical
measurement sample volume of 1 m3 and the average concentration of larger drops in
the sample which is often less than 1 per m3. For example, for an average concentration
of 4 mm diameter drops of 1 drop per 100 m3, on average 99 of 100 1-minute samples
will not register a drop 4 mm in size . Without the large drop, the 99 samples will have
a low bias in R and a slightly larger low bias in Z because of the »D4 compared to
D6 weighting. The one sample with the 4 mm drop will have high biases in R and
Z, but when averaged with the other 99 samples the mean bias will be still be low. This
type of sampling bias associated with an exponential-type distribution, where signi� cant
contributions to R and Z can come from low concentrations of large drops, is in addition
to the Poisson uncertainty which is based on the number of drops measured.

(d ) Processing procedure
To process the disdrometer data to reduce uncertainties we have to compromise

between two con� icting constraints. To reduce sampling error we should increase
the number of drops by increasing the sampling accumulation time. To reduce errors
associated with mixing samples representing distinct precipitation processes, we should
keep the sampling time small. As a compromise between these two constraints, we have
chosen a 10-minute accumulated RDSD as the basis of our analysis, and a 60-minute
accumulated RDSD for comparison. A 10-minute accumulation period allows us to
reduce but not eliminate sampling errors. A 60-minute accumulation period permits
us to reduce sampling error further but at the expense of mixing rain patches. Since we
are comparing data obtained from two instruments, we have the additional constraint
that we would like to compare the same time periods, e.g. 01:00:00–01:09:59. This
latter constraint means that sometimes we will include minutes within the 10-minute
period where an individual instrument did not measure any drops¤. A time period
is considered rainy if at least 80% of the 1-minute measurements within the period
had drops. In processing the data, we have removed 1-minute measurements with less
than 20 raw drop-counts (not dead-time corrected) which usually correspond to non-
precipitation triggers such as wind hits and insects. We have also applied a minimum
rain-rate threshold of 0.2 mm h¡1 to remove accumulated samples prone to large
sampling errors.

Radar re� ectivity (assuming Rayleigh scattering), liquid-water content and rain rate
were calculated from the dead-time corrected RDSD (N.D/ with N the number of drops
and D the drop diameter, in units of m¡3mm¡1) as follows.

Z D
20X

iD1

N.Di/D
6
i 1Di ; (1)

W D
¼

6

20X

iD1

N.Di/D
3
i 1Di ; (2)

R D
3:6¼

6000

20X

iD1

N.Di/D
3
i V .Di ; T ; P /1Di : (3)

¤ This processing method differs from other methods where consecutive rainy minutes are processed into
10-minute accumulated samples.
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TABLE 2. RAINDROP SIZE DISTRIBUTION DATA SAMPLE STATISTICS

Drop counts per
sample (as measured;

no dead-time correction)Rain-rate Total Average
Sample category Number accumulation rain rate

description (mm) of samples (mm) (mm h¡1) Min. Mean Max.

(a) For full 10-minute and 60-minute datasets for disdrometers DLR and UW
DLR All 1432 835 3.5 116 3445 12 601

10-minute R < 1 504 44 0.5 116 1735 6998
1 6 R < 5 674 265 2.4 255 3912 12 601
5 6 R 10 138 157 6.8 1425 5147 10 502

10 6 R < 50 112 326 17.5 1192 6088 9580
R > 50 4 43 64 7140 7658 8120

UW All 1310 731 3.3 128 4075 17 566
10-minute R < 1 487 43 0.5 128 2238 9828

1 6 R < 5 607 244 2.4 315 4561 17 555
5 6 R 10 113 131 6.9 1533 6245 12 068

10 6 R < 50 100 286 17.1 2485 7431 11 228
R > 50 3 28 56.1 9662 10 158 10 905

DLR All 269 831 3.1 735 18 306 61 638
60-minute R < 1 82 42 0.5 735 8818 29 364

1 6 R < 5 144 334 2.3 2883 20 674 61 638
5 6 R < 10 25 174 7 6298 23 445 46 477
10 6 R < 50 18 281 15.6 17 018 35 447 49 893

R > 50 0 – – – – –
UW All 245 729 3.0 1930 21 807 96 483

60-minute R < 1 80 40 0.5 1930 12 053 44 142
1 6 R < 5 127 297 2.3 6299 23 641 96 483
5 6 R < 10 22 145 6.6 11 150 31 235 55 131
10 6 R < 50 16 247 15.5 23 127 43 048 62 608

R > 50 0 – – – – –

(b) As (a) except for timeA10 and timeB10 subsets of combo10
timeA10 All 1370 1113 4.9 116 3817 14 141

R < 1 412 36 0.5 116 2008 9828
1 6 R < 5 583 239 2.5 255 3697 14 141
5 6 R < 10 174 202 7 1425 5224 12 068
10 6 R < 50 194 565 17.5 1192 6579 11 114

R > 50 7 71 60.6 7140 8729 10 905
timeB10 All 1370 452 2.0 119 3679 17 566

R < 1 577 50 0.5 119 1966 8372
1 6 R < 5 698 270 2.3 612 4656 17 566
5 6 R < 10 77 85 6.6 2122 6584 11 457
10 6 R < 50 18 47 15.6 3874 8257 11 228

R > 50 – – – – – –

The total accumulation and average rain rates are calculated after the dead-time correction is applied. The
UW data had sporadic dropouts due to a computer problem so the time periods of the DLR and UW data
do not match exactly and, as a result, the statistics for the full datasets are not expected to match. The full
DLR and UW 10-minute datasets are combined to yield the combo10 dataset, and the 60-minute data are
also combined to yield the combo60 dataset. See text for further details.

For each of the 20 size categories, Di is the mean diameter of the size category in mm,
and 1Di is the width of the size category in mm. The units are: for Z, mm6m¡3; for
W , mm3m¡3; and for R, mm h¡1. The particle fall speed, V , is a function of diameter,
temperature, T , and pressure, P (Berry and Pranger 1974) and is in units of m s¡1.

For our analysis we used several versions of the disdrometer data, the union of the
10-minute accumulated DLR and UW data, combo10, and the union of the 60-minute
accumulated DLR and UW data, combo60. Table 2(a) shows statistics for the full DLR
and UW 10-minute and 60-minute datasets separately. Additionally, two independent
subsets, timeA10 and timeB10, were obtained by dividing the combo10 data by time
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Figure 1. Plot of calculated re� ectivity, Z, versus calculated rainfall rate, R, from 10-minute accumulated DLR
and UW disdrometer raindrop size samples. Z–R relations are indicated based on mean coef� cient a values for:
combo10 dataset, Z D 216R1:5 (solid line); DLRoverlap10 subset of Z D 219R1:5 (dotted line); and UWoverlap10

subset of Z D 205R1:5 (dashed line). See text for details.

(before and after 2230 UTC 22 October 1999) to yield datasets each with 1370 samples
(Table 2(b)). Although the time periods for timeA10 and timeB10 are identical in length,
the precipitation was not distributed evenly through the SOP, and timeA10 had a total
rainfall accumulation of 1113 mm compared to the 452 mm of timeB10 (Table 2(b)).
By de� nition the sum (within round-off error) of the rainfall accumulations for timeA10
and timeB10 is equal to the sum of the rainfall accumulations for the DLR and UW 10-
minute datasets (i.e. combo10). The effect of the dead-time of the instrument is evident
in the smaller number of drops counted at higher rain rates. At least half of the rain
accumulation was obtained within rain rates <10 mm h¡1. The 60-minute data have
similar total accumulations but lower average rain rates compared to the 10-minute
data, as is expected given the roughly log-normal distribution of 1-minute rain rates
(Table 2(a)).

4. ANALYSIS

(a) Characteristics of samples from the two disdrometers
The calculated Z versus calculated R values for the accumulated 10-minute samples

from both disdrometers are shown in Fig. 1. The points from both disdrometers are
scattered relatively evenly throughout the plot, indicating that the data from the two
disdrometers probably represent two different samples from the same parent population.
Overall there is a large scatter of up to 10 dBZ for a given rain rate, with some
portion of the scatter related to sampling error associated with the small sample volumes
(section 2(c)) and the remaining portion due to natural variability.

To determine if the DLR and UW datasets have a relative bias between the two
instruments, the subset of data from each instrument corresponding to the time when
both instruments recorded rainfall was examined, DLRoverlap10 and UWoverlap10,
corresponding to 1243 10-minute samples from each. The frequency distributions of Z
and log10.R/ (Figs. 2 and 3) are very similar overall as are the statistics in Table 3. Given
sampling errors and the small spatial-scale variability of rainfall (Habib and Krajewski
2002) we do not expect instruments a few metres apart to obtain identical samples.
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Figure 2. Normalized frequency distribution of calculated re� ectivity, Z, values for DLRoverlap10 and UWover-
lap10 (dotted line) corresponding to 10-minute accumulations during the subset of observation periods when both

DLR and UW distrometers recorded rain rates > 0.2 mm h¡1 . See text for details.
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Figure 3. Same as Fig. 2 but for calculated rainfall, R, values.

The difference in rainfall accumulation between the two instruments is less than 2%
(Table 3). While there are slight differences between the DLR and UW subsets, there is
no signi� cant relative bias between them. We conclude that it is reasonable to combine
the data from both instruments in our analysis.

(b) Calculation of Z–W and Z–R relations
The methods of calculating Z–R and Z–W relations from measured RDSD are

almost as numerous as the number of papers that treat this subject. The resulting
relationship can be very sensitive not only to the input data but also to the method by
which it was calculated (Campos and Zawadzki 2000).

(i) Z–W . For the Z–W relations, we use a quadratic equation of the form W D qZ4=7

(Kessler 1969; Smith et al. 1975) which simpli� es into the linear equation:

log10.W / D log10.q/ C .4=7/log10.Z/: (4)
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TABLE 3. COMPARISON OF STATISTICS BETWEEN DISDROMETERS
DLR AND UW 10-MINUTE ACCUMULATIONS DURING THE 207.2 h

WHEN BOTH RECORDED RAIN RATES > 0:2 mm h¡1

Statistic DLRoverlap10 UWoverlap10

Rain rate Min. 0.2 0.2
(mm h¡1) 1st Quartile 0.7 0.7

Median 1.6 1.6
Mean 3.4 3.5
Standard deviation 5.5 5.5
3rd Quartile 3.7 3.8
Max. 61.8 60.5

Rain Accumulation (mm) 710 723
Re� ectivity Min. 7.5 8.7
(dBZ) 1st Quartile 21.1 20.8

Median 26.3 26.4
Mean 26.7 26.8
Standard deviation 8.0 7.6
3rd Quartile 31.6 32.1
Max. 51.1 52.1

The exponent 4=7 in the Z–W relation is obtained as follows. The RDSD is approx-
imated as an exponential distribution, N.D/ D No e¡3D dD for D from 0 to in� nity
where No is a constant. The de� nite integral forms of (1) and (2) are integrated and
applied to the general formula W D qZs to obtain:

No¼ !
34 D q

³
No

6!
37

ś

: (5)

Setting s D 4=7 will cancel the 3 terms and remove the direct dependency of q
on W. Following the methodology of Doelling et al. (1998) for determining Z–R, we
determine a value of q for each sample of the population using q D W=.Z4=7/.

The plot of log10(q) versus log10(W ) (Fig. 4(a)) illustrates that log10(q) values are
uncorrelated with W and vary between approximately 0.3 and 30 q units. The sloping
lower edge of the cloud of points is an artifact of the thresholding of the processed data
on a 0.2 mm h¡1 rain rate. Lines of constant rain rate are roughly parallel to the lower-
right edge. The narrower distribution of q values for higher rain rates is expected, since
the higher rain-rate samples have a larger number of drops and less statistical sampling
error than the lighter rain-rate samples (see section 3 and Table 2). The distribution of q
is approximately log-normal (Fig. 4(b)) and the distribution of log10(q) for this dataset
is close to Gaussian (Fig. 4(c)). A Gaussian distribution of log10(q) is not generally true,
especially for smaller sample sizes. We use the mean¤ log10(q) value to obtain the best
estimate, and §1 standard deviation (¾/ of log10(q) as an assessment of the uncertainty
(Table 4). The bottom half of Table 4 shows the equivalent values in q units. Since §1
standard deviation of log10(q) is not symmetric in q , we have indicated ¡¾ as the 16th
percentile and C¾ as the 84th percentile. Figure 4(d) and the biases in Table 4 provide
information on how well (4) estimates liquid-water content from Z compared to liquid-
water content calculated from the RDSD in (2). Cumulative bias is:

6 estimated=6 calculated;

and average bias is:
6.estimated=calculated/=N:

¤ Doelling et al. (1998) used the median rather than the mean of log10(q/.
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Figure 4. Plots of: (a) raindrop size distribution (RDSD) calculated liquid-water content, W , versus coef� cient
q in W D qZ.4=7/, where Z is radar re� ectivity; (b) frequency distribution of q; (c) frequency distribution of log10
(q); and (d) Plot of RDSD-calculated W versus estimated W using W D 3:4Z.4=7/ and calculated Z. Plots are

based on the combo10 dataset (see text).

TABLE 4. ESTIMATES OF COEFFICIENT q AND ITS UNCERTAINTIES AND

BIASES IN log10(W ) D log10.q/ C .4=7/ log10(Z) AND W D qZ4=7

combo10 combo60 timeA10 timeB10

log10(q) mean 0.529 0.460 0.517 0.540
¾ 0.25 0.23 0.25 0.26
median 0.527 0.458 0.536 0.517
r2 1.05 1.09 1.09 0.97
cumulative bias 1.00 1.0 1.0 1.0
average bias 1.01 1.01 1.01 1.01

q mean 3.4 2.9 3.3 3.5
16th percentile 1.9 1.7 1.9 1.9
84th percentile 6 4.9 5.8 6.2
r2 1.05 1.09 1.09 0.97
cumulative bias 1.05 1.05 1.07 0.99
average bias 1.18 1.16 1.19 1.18

¾ is the standard deviation, r2 is the ratio of explained variation to total variation
(coef� cient of determination). See text for further details.

While the spread of points around the 1:1 line in Fig. 4(d) is wide, there is no bias to
the cumulative estimate based on (4). Individual estimates of W for dependent data will
have an average positive bias of 15–18%. The difference in the mean values between
the combo10 and combo60 data is larger than the standard error of the mean .¾=

p
N/,

but its physical signi� cance is dif� cult to assess. The shift in the combo60 mean value
of q toward lower values is consistent with a reduction in the low bias of calculated Z
relative to W associated with a smaller sampling error. The combo60 dataset has the
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positive aspect of having a smaller sampling error in each sample, but it has the negative
aspects of a smaller total number of samples and larger errors associated with mixing
rain patches compared to combo10. Also, short-duration rain events lasting less than 48
minutes in a given hour are not included in the combo60 dataset. A much larger dataset
than that obtained during MAP would be needed to be able to quantify the relative
contributions of these sources of uncertainty to the difference in mean q between the
combo10 and combo60 datasets.

(ii) Z–R. Calculation of rain-rate requires knowledge of particle fall speed V .D;
T; P / (see (3)). For surface-based disdrometer data, the vertical air velocity is assumed
to be zero, and T and P are treated as constants (here we use T D 20 ±C, P D
1013:25 hPa). For radar measurements and in situ data obtained by aircraft these
physical assumptions are not valid, and can lead to errors in estimated fall speed and
hence rain rate (Dotzek and Beheng 2001). We cannot parallel the methodology used
to obtain an equation for Z–W , as expressions for fall speed (Berry and Pranger 1974)
that closely match empirical data do not have a simple functional form amenable to a
de� nite integral solution for R. For the Z–R relation¤ we assume a quadratic equation
of the form Z D aR1:5 , which simpli� es to the linear equation:

log10.Z/ D log10.a/ C .1:5/ log10.R/: (6)

The � xed exponent of 1.5 for the Z–R relation was originally proposed by Smith and
Joss (1997) based on empirical studies, and has been tested with multi-year samples of
disdrometer data by Doelling et al. (1998) and Steiner and Smith (2000).

The values of the coef� cient a as a function of rain rate for each of the 10-
minute samples in combo10 are shown in Fig. 5(a). If there were distinct a values for
lighter versus heavier precipitation, it would manifest in the scatter plot as discernably
different populations of points as a function of R. Instead, we have one widely scattered
population of a values centred roughly between log10.a/ values of 2 to 2.7. As in
Fig. 4(a), there is a narrower distribution of a values for higher rain rates, >5 mm h¡1

compared to <5 mm h¡1, since the higher rain-rate samples have less statistical
sampling error.

The distribution of a is approximately log-normal (Fig. 5(b)), similar to the charac-
teristics of the distribution of q (Fig. 4(b)), while log10.a/ is roughly normal (Fig. 5(c)).

Similar to the procedure used to obtain the Z–W relationship, we compute the
mean value and standard deviation of log10.a/ and their equivalent values in a (Table 5).
The resulting relationships are Z D 216R1:5 for combo10 (Fig. 1) and Z D 268R1:5 for
combo60. Again, the statistics for the combo60 data are shifted toward higher a values,
which is consistent with a reduction in the low bias of calculated Z relative to calculated
R associated with a smaller sampling error. The fall velocity factor in R is likely to
have a compensating effect for some types of errors, as the biases in Table 5 are slightly
smaller than in Table 4 such that an individual estimate of R for dependent data will
have an average positive bias of »10%.

The mean log10(a) Z–R relations for the overlapping time period of the two
disdrometers are Z D 219R1:5 for DLRoverlap10, and Z D 205R1:5 for UWoverlap10
(Fig. 1). Linear regression of these two datasets results in Z–R relations of Z D

¤ Although we are interested in obtaining a relation to transform observed Z into estimated R, and use Z as the
independent variable in our computations, we will follow the convention of describing this relation in terms of
Z D aRb so that our results can be more readily compared to those reported by other investigators.
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Figure 5. Plots of: (a) raindrop size distribution (RDSD) calculated rain rate, R, versus coef� cient a in
Z D aR.1:5/, where Z is radar re� ectivity; (b) frequency distribution of a; (c) frequency distribution of log10(a);
and (d) Plot of RDSD-calculated R versus estimated R using Z D 216R1:5 and calculated Z. Plots are based on

the combo10 dataset (see text).

TABLE 5. ESTIMATES OF COEFFICIENT a AND ITS UNCERTAINTIES AND
BIASES IN log10(Z) D log10.a/ C .1:5/ log10(R) AND Z D aR1:5

combo10 combo60 timeA10 timeB10

log10(a) mean 2.335 2.428 2.340 2.332
¾ 0.29 0.27 0.29 0.29
median 2.332 2.427 2.309 2.355
r2 1.09 1.11 1.1 1.08
cumulative bias 1.0 1.0 1.0 0.99
average bias 1.0 0.89 0.98 1.01

a mean 216 268 219 215
16th percentile 112 144 113 111
84th percentile 418 499 424 417
r2 1.09 1.11 1.10 1.08
cumulative bias 1.07 1.06 1.08 1.03
average bias 1.1 1.09 1.11 1.09

¾ is the standard deviation, r2 is the ratio of explained variation to total variation
(coef� cient of determination). Values of log10.R/ D 0 are removed from the
dataset in the calculation of average bias. See text for further details.

221R1:48 (DLRoverlap10), and Z D 214R1:42 (UWoverlap10). Therefore, for the dis-
drometer data obtained during the SOP the assumption of 1.5 as the exponent in the Z–R
relation is reasonable.

Another method of estimating the a value is to use its rain-rate-weighted median
rather than its arithmetic mean. Samples contributing more to the rainfall accumulation
are given heavier weighting, yielding an estimate of a which will have smaller errors
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TABLE 6. IMPACT OF § STANDARD DEVIATION IN COEFFI-
CIENT q IN W D qR4=7 COMPARED TO combo10 MEAN VALUE OF

3.4

Value of coef� cient q 1.9 3.4 6
% difference in W estimated from Z 56% 100% 176%
Difference in dBZ estimated from W ¡4.4 0 4.3

See text for details.

TABLE 7. IMPACT OF § STANDARD DEVIATION IN COEFFI -
CIENT a IN Z D aR1:5 COMPARED TO combo10 MEAN VALUE OF

216

Value of coef� cient a 112 216 418
% difference in Restimated from Z 155% 100% 64%
Difference in dBZ estimated from R 2.3 0 ¡2.4

See text for details.

when used in applications to estimate rainfall accumulations, but larger errors in ap-
plications to estimate individual rain rates. To estimate the best rain-rate-weighted a
value, the distribution of log10.a/ is sorted by increasing rain rate and the median value
determined. This rain-rate-weighted median method yields Z D 215R1:5 for combo10,
which is nearly identical to the arithmetic mean value of Z D 216R1:5 for the non-
weighted data (Table 5). For the combo60 data, the rain-rate-weighted median method
yields Z D 255R1:5. The difference between this and the non-weighted mean relations
(Z D 268R1:5 from Table 5) corresponds to only a 0.2 dBZ difference for a given R.

(c) Uncertainties and their impact
A recommendation to use a particular Z–W or Z–R relation is not truly complete

without information on how well the suggested relations perform on independent data.
The nature of errors associated with these relations makes sample size particularly
important, and it is not uncommon for the entire available dataset to be used to estimate
the Z–W or Z–R relation even in multi-year datasets (e.g. Doelling et al. 1998; Steiner
and Smith 2000). The quality of the relation may be lowered if the sample size is reduced
below some critical value. Unfortunately, having used all the data to obtain our best
estimate we have no independent data with which to test it.

We address the uncertainty associated with our methodology by examining two
independent datasets (timeA10 and timeB10) based on storms sampled before and after
2230 UTC 22 October 1999 at Locarno-Monti. This calculation is equivalent to assuming
that the rainy portion of the SOP was half as long, and applying the Z–W and Z–R
relations obtained in one half to the independent data collected in the other half. The
mean coef� cients vary slightly for Z–W (Table 4) and for Z–R (Table 5) compared to
the combo10 dataset as a whole. Application of the relations derived for one half of the
data to the Z data obtained in the other half yields cumulative biases of net liquid-water
content and rainfall of 94% and 113% for the Z–W relations and 101% and 110% for
the Z–R relations.

By de� nition, 68.27% of the samples in the population fall within §¾ . The impact
of applying the relations corresponding to the §¾ q and a values are shown in Tables 6
and 7. For comparison, the typical error in R associated with not correcting for the
variation of the pro� le of re� ectivity between the lowest radar measurement and the
ground is 3 dB (factor of two) in the Alps (Germann and Joss 2002).



490 M. HAGEN and S. E. YUTER

5. CONCLUSIONS

RDSD data obtained from two Joss–Waldvogel disdrometers deployed at Locarno-
Monti during MAP were analysed to yield recommended Z–W and Z–R relations and
their uncertainties. Disdrometer data were accumulated into 10-minute and 60-minute
samples to reduce, but not eliminate, sampling errors which usually manifest as a low
bias in R and a lower bias in Z (Smith et al. 1993).

For the majority of radar data obtained during MAP without dual polarization, Z–W
and Z–R relations provide a method to estimate volumetric liquid-water content and rain
rate from observed radar re� ectivity. Despite the large uncertainties, the recommended
relations may be useful to map radar re� ectivity into a form that can be qualitatively
compared to other estimates of liquid-water content and rain rate. An advantage of the
Z–W and Z–R relationships over dual-polarization methods (Bringi and Chandrasekar
2001) is that they can be applied to radar echo regions where the re� ectivities are weak
and the dual-polarization signal is noisy. A disadvantage of Z–W and Z–R methods
is that they can yield large errors when they are mistakenly applied to regions which
contain hydrometeors other than rain (e.g. the melting layer or regions containing
snow, hail, or graupel). Large errors can also result when these relations are applied
to re� ectivities which have not been corrected for common sources of bias (section 1).

Empirical relations between radar re� ectivity and liquid-water content do not
appear frequently in the literature, despite their utility for comparison with aircraft
in situ data and numerical model output and their relative simplicity compared to
a Z–R relation. Our recommended relationship of W D 3:4Z.4=7/ is valid for the
raindrop portion of the liquid-water content where the drops are >0.2 mm diameter.
Battan (1973) ennumerates 69 Z–R relations but only one Z–W relation for rain,
W D 3:9Z0:55 reported by Douglas (1964). Sekhon and Srivastava (1971) report a
Z–W relation of W D 0:98Z0:70 obtained from raindrop spectra inferred from vertically
pointing Doppler radar measurements in a thunderstorm. Raindrop spectra derived
from vertically pointing Doppler radar data are subject to spectral broadening from
turbulence (Joss and Dyer 1972) so Sekhon and Srivastava’s Z–W relation is not directly
comparable to one obtained from in situ data.

The combined 10-minute accumulation (combo10) disdrometer dataset mean rela-
tion of Z D 216R1:5 is bracketed by a lower bound of Z D 112R1:5 and an upper bound
of Z D 418R1:5. These bounds encompass the 60-minute accumulation (combo60) mean
relationship and all the Z–R relations used by the national weather services within
the MAP SOP domain: Austria, France, and Italy, Z D 200R1:6 (Marshall and Palmer
1948); Germany, Z D 256R1:42 (Aniol et al. 1980); and Switzerland, Z D 316R1:5 (Joss
et al. 1998). A 5 dBZ difference will translate into a 105%, 125%, 115%, and 115%
difference in R for the Marshall and Palmer (1948), Anoil et al. (1980), Joss et al.
(1998) and MAP Z–R relations respectively.

The maximum difference in the mean coef� cients in the Z–R relation, of 215 to
268, corresponds to only slightly more than 1 dBZ difference (Table 5). Errors in 30-
day rainfall accumulation due to mean RDSD variations in independent data are within
10% (Table 5), while uncertainty based on §¾ in individual rain rates can be 64–155%
(Table 7). The uncertainty in the Z–W relation in terms of §¾ (Table 6) is larger (56–
176%) than in the Z–R relation. Although uncomfortably large for some applications,
the relative sizes of these errors are smaller or comparable to several other known error
sources in rainfall mapping from radar data, and emphasize the importance of correcting
overall biases with proper radar calibration and biases as a function of range using
procedures to account for the variations in the vertical pro� le of precipitation from the
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height of radar measurement to the ground (Joss and Lee 1995, Dotzek and Beheng
2001, Germann and Joss 2002).

Our recommended Z–W and Z–R relationships for the LMTA would be slightly
different if the disdrometer data had been obtained at a location within the LMTA other
than Locarno-Monti, or if the SOP had been scheduled to start a few days later, a few
days earlier, or in a different year. Differences in data processing, whether a mean,
median value, or weighted median is used as the population estimate, and which subsets
of the data are examined, can yield variations in values of the coef� cients in the Z–W
and Z–R relations with little physical signi� cance (Tables 3, 4, and 5). Our goal was
to obtain a relation that will work well on average for data obtained within the LMTA
during the SOP. We did not produce relations for each IOP, since these would only
have value if we could also show that the relationship between rainfall at Locarno-
Monti compared to other areas within the LMTA was similar among IOPs. Rainfall
maps derived from rain-gauge data show large variability in the spatial distribution of
rainfall in the LMTA among IOPs so this is unlikely to be the case.

If there were a strong relation between the coef� cient values in the Z–W and Z–R
relations and distinct precipitation processes, such as precipitation growth by accretion
of cloud liquid water versus growth by vapour deposition, these would manifest as
discernably distinct populations in the scatter plots in Figs. 4(a) and 5(a). In particular
one would expect a distinction between heavy rain >»10 mm hr¡1, which is primarily
a result of accretional processes, and lighter rain which can be a result of a variety of
precipitation processes. When the combo10 data are divided into subsets corresponding
to samples with rain rates >10 mm hr¡1 and 610 mm hr¡1, the mean coef� cients for
the Z–R relation are 219 and 216, respectively. The absence of distinct populations
in the scatter plots indicates that either different precipitation processes occurring at
Locarno-Monti during MAP do not have strong and distinctly different signals in the
coef� cients of Z–W and Z–R, or that one precipitation process dominates the samples
in both heavier and lighter rain.

Since it is unlikely that variations in RDSD follow national boundaries, it would
be useful to create a merged rainfall product based on quality controlled radar data
for the MAP domain using a single Z–R relationship. From a qualitative standpoint,
the exact relation used is not critical, as all the national weather service relations are
within one standard deviation of the recommended MAP relation. As errors in rain rate
at a particular point estimated from radar data can be large (Fig. 5(d) and Table 7),
comparisons between radar-derived rainfall and other datasets and numerical models
are best carried out using areal averages or storm accumulations.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the collaboration of Jürg Joss and Urs Germann
of the MeteoSwiss in the collection and analysis of the DLR and UW disdrometer data
at Locarno-Monti. The second author also thanks MAP Principal Investigator Robert
A. Houze, Jr. for his support and encouragement. The work of the second author was
supported by NSF grant ATM-9817700 and NASA TRMM grant NAG5-9750.

REFERENCES

Aniol, R., Riedl, J. and
Dieringer, M.
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