\\ \\ \\ \\ | I. Introduction |
| :---: |
| Purpose
 To develop an alternative to the 3-D Cartesian grid for comparing model output to radar data. Interpolating NWS radar data into a filled Cartesian grid creates too many artifacts. We have taken the alternative approach of comparing the model output to the subset of the 3-D grid along the slantrange elevation angle sweeps.
 Frequency of Reflectivity $>=13 \mathrm{dBZ}$ | \\ \section*{I. Introduction \\ \section*{I. Introduction \\ \\ Purpose \\ \\ Purpose \\ \\ To develop an alternative to the 3-D Cartesian grid for comparing mode \\ \\ To develop an alternative to the 3-D Cartesian grid for comparing mode output to radar data. Interpolating NWS radar data into a filled Cartesian grid output to radar data. Interpolating NWS radar data into a filled Cartesian grid creates too many artifacts. We have taken the alternative approach of creates too many artifacts. We have taken the alternative approach of comparing the model output to the subset of the 3-D grid along the slant comparing the model output to the subset of the 3-D grid along the slant range elevation angle sweeps. range elevation angle sweeps. \\ \\ Frequency of Reflectivity $>=13 \mathrm{dBZ}$} \\ \\ Frequency of Reflectivity $>=13 \mathrm{dBZ}$}

Radar Beam Geometry

- Radial azimuths are aligned every degree starting with 0.5 degree - Gate spacing is 250 meters with the first gate's center at 250 meters from the radar
- Elevations are based on NWS volume coverage pattern's lowest elevations (typically 0.5, 1.5 and 2.4 degrees)
- Radar data and model output are interpolated to the common polar grid to enable comparison in polar coordinates instead of Cartesian coordinates

Common Polar Grid Characteristics

III. Summary

This methodology enables consistent radar-model comparisons of the orographic enhancement relative to topography. Horizontal structures within the rain layer are revealed with accumulated pixel statistics, while cell tracking makes feature-based comparisons possible. Future work will help refine model simulations of orographic precipitation.

1 - Doviak, R. J. and D. S. Zrnic, 1993: Doppler Radar and Weather Observations. 562 pp. 2 - Hagen, M. and S. E. Yuter, 2003: Relations between radar reflectivity, liquid-water content and rainfall rate during the MAP SOP. Q.J.R. Meteorol. Soc

- Guarente, et al., 2007: WRF simulations of a severe squall line: Comparison against high esolution BAMEX observations. Presentation, 12th Conf on Mesoscamparison against Meteor. Soc., Waterville Valley, NH.

We would like to thank Matthew Miller for his continuous help with Matlab and for developing the color table used in this poste.
\qquad

