Cool-season intermittent precipitation cells in the Pacific Northwest

S. E. Yuter¹, A. M. Hall¹, J. G. Cunningham¹, N. R. Hardin¹, and B. A. Colle²
¹Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University
²School of Marine and Atmospheric Sciences, Stony Brook University

I. Introduction and Location

Purpose

To examine the spatial patterns and life-cycle statistics for tracks of convective cells observed by the operational WSR-88D radar at Portland, Oregon during cool-season storms.

Study Domain

- Focusing on the southern and northeastern quadrants of the Portland, Oregon radar domain minimizes beam blocking issues.

Area of Interest

Convective/Stratiform Identification

- Convective cells are identified inside of larger scale stratiform precipitation by identifying local peaks in radar reflectivity within 11 km diameter subregions.
- The area around the peak reflectivity is also examined to determine the size of the convective cell.

Once all tracks have been identified, the longest tracks are isolated for further examination.

For the 12 hour period of the storm on 19 Mar 2007, 195 paths were found that had at least 3 nodes compared with 40 tracks with at least 6 nodes.

These 40 longest tracks were used in this initial investigation for computing track data in section III.

The reflectivity field is thereby reduced to a 3 value field shown above, right. The image shows white where reflectivities are very low or non-existent, light blue where stratiform precipitation is present, and dark blue where an embedded convective cell is present.

The size and position of these convective "blobs" are recorded for each time step.
- The distribution of blob sizes shows that the majority of tracked blobs are less than 50 pixels in size (<100 km²).
- The median crest longitude of the Cascade Range (121.66° W) is used as the reference point.
- Convective cells are referenced by their distance to the crest in the figures above.
- No significant range effects are present in the convective cell reflectivity as a function of radial distance from the radar.

- While further cases must be compiled, for this case the convective cells showed little enhancement in reflectivity as they traveled upslope suggesting that embedded convection life cycles may not be closely tied to underlying orography.
- The longest tracks for this case, occurred toward the beginning and end of the storm, but not during the middle.
- Examples such as these will aid in isolating conditions conducive to the formation of embedded convective cells and in quantifying their life cycles.

Conclusions

- For the 12 hour period of the storm on 19 Mar 2007, 195 paths were found that had at least 3 nodes compared with 40 tracks with at least 6 nodes.
- The size and position of these convective "blobs" are recorded for each time step.
- The distribution of blob sizes shows that the majority of tracked blobs are less than 50 pixels in size (<100 km²).

Acknowledgments

- This material is based upon work supported by the National Science Foundation under Grant # 0908420.
- Thanks also go to Casey Burleyson, Jeremy Freeman, and Matthew Miller, for software development and technical assistance.
- Email contact: seyuter@ncsu.edu or amhall2@ncsu.edu