
ABSTRACT

TOMKINS, LAURA MARY. Synthesis of Radar-Observed Characteristics, Storm Structures, and
Surface Snowfall Rates in 10+ Years of Northeast US Winter Storms. (Under the direction of Dr.
Sandra Yuter).

Accurate forecasts of snowfall are crucial to minimize the impacts of winter weather. Current

numerical weather prediction models struggle to accurately forecast the timing, intensity, and

duration of snow. We use over 11 seasons of meteorological observations in the northeast US

encompassing 264 days with substantial regional snowfall to investigate several characteristics

of winter storms and their associations with high snow rates at the surface. Regional radar

mosaics derived from the National Weather Service operational NEXRAD network are used to

assess how mesoscale snow bands impact the surface snowfall rate. We developed two new

objective image processing techniques as part of this work; one for identifying and reducing

the visual prominence of mixed precipitation (rain with snow), and another for identifying

locally-enhanced reflectivity features. Hourly surface snowfall rates from ASOS stations in the

northeast US are compared to hourly statistics of locally-enhanced feature area in the vicinity

of the surface weather measurements. Our results show that heavy snow rates (> 2.5 mm hr−1

liquid water equivalent) are rare and are not consistently associated with locally enhanced

reflectivity features (i.e. snow bands). Detailed vertical cross-sections of winter storms from

research radars demonstrate that snow particles do not fall straight down, rather they are blown

sideways 10s of km as they fall. Ice streamers with heavier snow emanating from generating

cells near cloud top are tilted and smeared on the way to the surface. In the absence of vertical

column continuity in reflectivity, there is not a direct relationship between scanned operational

radar observations above the ground and surface snow rates.

In addition to the radar reflectivity fields, we examine storm structure features related

to vertical motions at 10s of km and 100s of km spatial scales. The observed radar Doppler

velocity field is used to detect wave features (10s of km scale), known as velocity waves, to

explore the relationship between propagating bands of upward and downward motions and

surface snow rates. When comparing the distributions of snow rates from times with and

without velocity waves, we found that times with waves have a slightly higher liquid equivalent

snow rate (median: 0.76 mm hr−1) than times without waves (median: 0.3 mm hr−1). Low

pressure center tracks derived from ERA5 reanalysis data are used to visualize the snow rates

in a Lagrangian framework relative to the low pressure center. Patterns of snow rates that are

generally consistent with the expected spatial patterns of frontogenesis at 100s of km scales.

86% of heavy surface snow rates (> 2.5 mm hr−1 liquid water equivalent) are observed when



the surface pressure is decreasing rather than increasing.

This comprehensive analysis gleaned from weather radar, surface stations, and focused

observations from research aircraft highlights the large uncertainties and ambiguities in inter-

preting observed radar reflectivity in snow and the importance of using large sample sizes to

gain representative physical insights.

Key implications of our findings are that primary bands (snow bands longer than 200 km that

are persistent over several hours) are useful in identifying regions with heavier snow rates since

primary bands are related to strong frontogenesis. In regions with weak to no frontogenesis,

multi-bands (sets of parallel snow bands < 200 km in length) are a distraction since they are

rarely associated with heavier snow rates.



© Copyright 2024 by Laura Mary Tomkins

All Rights Reserved



Synthesis of Radar-Observed Characteristics, Storm Structures, and Surface Snowfall Rates in
10+ Years of Northeast US Winter Storms

by
Laura Mary Tomkins

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Geospatial Analytics

Raleigh, North Carolina
2024

APPROVED BY:

Dr. Matthew Parker Dr. L. Baker Perry

Dr. Mirela Tulbure Dr. Sandra Yuter
Chair of Advisory Committee



ACKNOWLEDGEMENTS

First and foremost, I would like to thank by advisor, Dr. Sandra Yuter, for her guidance

and mentorship over the last 10+ years. This work would not have been possible without her

and I am grateful for the invaluable opportunities she has provided for me. I appreciate her

encouragement to challenge myself and grow, not only as a scientist but also as an individual.

I would also like to thank my committee members, Dr. Matthew Parker, Dr. Baker Perry,

and Dr. Mirela Tulbure, for generously dedicating their time to serve on my committee and

offering valuable insights. Special thanks also to Dr. Matthew Parker for his crucial instruction

in mesoscale meteorology.

Many, many thanks to Dr. Matthew Miller for enlightening conversations which helped to

advance this work, and for always being available to solve my never-ending technical problems.

Similarly, thank you to both Luke Allen and Kevin Burris for all their help sharing data and

methods, and general insightful conversations.

I am grateful to all past and current members of the Environment Analytics research group,

without whom, this work would not have been possible. Thank you to Nicole Corbin, Nicole

Hoban, and Sara Sienkiewicz whose contributions to previous work were invaluable in shaping

this project into its current form. Thank you to Anya Aponte-Torres, Declan Crowe, Jordan

Fritz, Cameron Gilbert, Robert Harley, McKenzie Peters, and McKenzie Sevier for all their help

with data processing. Additional thanks to Logan McLaurin for providing helpful feedback

on permutation testing. Finally, thank you to Rachel Kennedy and Laura Kent who were both

wonderful office mates and provided great encouragement.

Additional thanks to Dr. Brian Colle, Phillip Yeh, and Erin Leghart at Stonybrook University

and Dr. David Novak at the Weather Prediction Center for providing useful feedback on this

work.

I would like to thank my parents, Lynn and Glyn Tomkins, for their consistent and unwa-

vering support. None of this would have been possible without the opportunities that they

provided to me. To all my friends, to my cat, Freddie, to my siblings, Anna and TomTom, to my

best friend, Kara, and to my partner, Joel, I am so thankful for all your support and serving as a

constant source of relief during challenging times.

Thank you to the Center for Geospatial Analytics (CGA) for the opportunity to take part in a

unique, multi-disciplinary program. I am additional grateful to the CGA, NSF, and NASA for

their financial support. Finally, I would like to thank the NASA IMPACTS team for all their hard

work collecting and preparing the data used in this work.

iii



TABLE OF CONTENTS

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Definitions and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Winter Storm Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Radar Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Regional Radar Mosaics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Image muting of mixed precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Objective detection of local reflectivity enhancements . . . . . . . . . . . . . 12
2.2.4 Velocity Wave Mosaics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5 Classifying velocity wave presence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Hourly surface station observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Low pressure center tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Area × Time fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 3 Image Muting of Mixed Precipitation to Improve Identification of Regions
of Heavy Snow in Radar Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Regional Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Identification of mixed precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Evaluation with independent data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Application to RHIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 4 Dual adaptive differential threshold method for automated detection of
faint and strong echo features in radar observations of winter storms . . . 42

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Feature detection algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.1 Application in snow layers to identify faint and strong reflectivity features 57

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Chapter 5 Radar-observed characteristics and surface snow rates . . . . . . . . . . . . . . 65

iv



5.1 Enhanced reflectivity features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.1 Scanning radar enhanced reflectivity features and hourly snow rates . . . 65
5.1.2 Normalized distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.3 Only background echo present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.4 Sensitivity of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.5 Pragmatic considerations in nowcasting heavy snow using radar reflec-

tivity observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1.6 Complicating factors in relating observed radar reflectivity to surface

snow rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Velocity waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.1 Permutation tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.2 Relationship to enhanced reflectivity features . . . . . . . . . . . . . . . . . . . . 99

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Chapter 6 Variations in snowfall rates with storm structure and evolution . . . . . . . . 102
6.1 Snow rate and geographic pattern and distribution . . . . . . . . . . . . . . . . . . . . . 102
6.2 Snow rates associated with different storm stages (pressure tendency) . . . . . . . 108
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Chapter 7 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Appendix A List of storms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Appendix B Using visibility to estimate snowfall intensity . . . . . . . . . . . . . . . . . 127

v



LIST OF TABLES

Table 1.1 Table of microphysical processes and their associated change to mass per
unit volume (IWC/LWC) and to radar reflectivity. . . . . . . . . . . . . . . . . . . 5

Table 2.1 List of radar names and locations used in the analysis. The central radar,
KOKX, is annotated in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Table 2.2 Number of hours each wave classification was observed for each region. . 16

Table 3.1 Correlation coefficient values associated with physical mechanisms that
increase radar reflectivities when Z > 20 dBZ and other conditions are
held constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Table 4.1 Parameters used to detect locally enhanced echo features in winter storms.
All input parameters to the algorithm as run for this paper are provided
including those that are in effect turned off. . . . . . . . . . . . . . . . . . . . . . 47

Table 5.1 Band, frequency [GHz], sensitivity [dBZ] at 10 km (ER-2 radars)/1 km
(KASPR), spatial resolution [m]at 10 km below the aircraft (ER-2 radars)/above
the radar (KASPR), and citation for radars deployed on the ER-2 aircraft
and at Stonybrook University deployed during NASA IMPACTS. . . . . . . . 82

Table 5.2 Number of observations for each category. . . . . . . . . . . . . . . . . . . . . . . . 95
Table 5.3 25th, 50th, 75th percentiles, and mean values for liquid water equivalent

precipitation rate distributions for YES +MAYBE and NO waves and for
0-, 1-, and 2-hour time lags. Bottom panel is the 95th percentile of median
and mean values from permutation tests (see also Fig. 5.27). Units are
mm hr−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Table 6.1 Number of observations and median and mean values of precipitation
rate distribution by storm quadrant. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Table A.1 List of storm days between 1996-2023 used in the analysis. Dates are in
YYYYMMDD format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

vi



LIST OF FIGURES

Figure 1.1 Conceptual diagram of the environments associated with (a) primary
band event and (b) non-banded event. Regions of frontogenesis are
shaded in red. Other key features described in legend. Figure 15 from
Novak et al. (2004). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.2 Distribution of 700-800 hPa frontogenesis for each event colored by types
of bands present. Figure 10 from Ganetis et al. (2018). . . . . . . . . . . . . . 4

Figure 1.3 2D distribution of ice water content (IWC) [g m−3] from Nevzorov liquid
water and total water content probe and radar reflectivity [dBZ] from
the W-band Wyoming Cloud Radar (WCR) deployed on the University of
Wyoming King Air (UWKA) aircraft during the SNOWIE field campaign.
Figure 6 from Zaremba et al. (2023). . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 2.1 ASOS stations where daily snowfall accumulation is used to define a
winter storm in this analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.2 Map of NEXRAD radar locations (red stars). Shaded circles indicate
200 km radius used for reflectivity mosaics and blue dashed lines in-
dicate 117 km radius used for velocity wave mosaics. . . . . . . . . . . . . . . 11

Figure 2.3 Step-by-step wave detection method illustrated using sequential PPI
scans of radial velocity from NWS KOKX radar in Upton, NY, on 26 De-
cember 2010. Polar coordinate radial velocity fields at 0.5° elevation angle
for consecutive scans at (a) 23:40:00 UTC and (b) 23:45:47 UTC. (c) The
difference field computed from PPIs (b) minus (a) showing both positive
and negative temporal velocity changes. (d) Binary version of the nega-
tive portion of the difference field from (c). (e) Cartesian coordinate (0.5
km grid spacing) filtered version of (d) with eight-connected areas < 16
km2 removed. Figure 2 from Miller et al. (2022). . . . . . . . . . . . . . . . . . . 14

Figure 2.4 An example of the velocity wave mosaic from 27 December 2020 09:17
UTC. Red box indicates Massachusetts region and blue box indicates
New York City region for classifying waves (discussed in Sec. 2.2.5). . . . . 15

Figure 2.5 Map of ASOS stations (blue dots) used in the analysis. Blue ring surround-
ing ASOS stations indicates 25 km radius. Red stars and red ring indicate
NEXRAD stations and a 200 km radius used to create radar mosaics in
Sec. 2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.6 Histograms of Liquid Equivalent Precipitation Rate [mm hr−1] for obser-
vations ≤ 5 m s−1 (blue) > 5 m s−1 (red) presented on a (a) linear y-axis
scale and (b) log y-axis scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.7 Example time series of liquid equivalent precipitation rate [mm hr−1]
from the Boston, MA ASOS station (KBOS) from 7 February 2021 06:00
UTC to 8 February 2021 01:00 UTC. Precipitation rates are represented
as a bar spanning the hour they were accumulated. Plus signs indicates
times when the wind speed is> 5 m s−1 and T indicates times when trace
amounts of precipitation where observed. . . . . . . . . . . . . . . . . . . . . . . 19

vii



Figure 2.8 An example low pressure track for 5 December 2020. Map of geographic
location of low pressure system (top panel) and time series of low pres-
sure system (bottom panel) colored by MSLP value as in legend. Period
covers 4 December 2020 00 UTC to 6 December 2020 23 UTC. . . . . . . . . 21

Figure 2.9 Map of (a) all tracks of low pressure centers and (b) density of low pressure
center locations for events between 2012-2023. . . . . . . . . . . . . . . . . . . . 22

Figure 2.10 Track density of (a) ordinary extratropical cyclones and (b) extratropical
cyclones leading to extreme weather events during October-March 1979-
2016. Figure 8 from Bentley et al. (2019). . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 2.11 Time series of all low center pressure tracks between 2012-2023 normal-
ized by the minimum pressure at time t=0. (a) low center pressure [hPa]
and (b) 3-hour pressure tendency [hPa hr−1] of low pressure centers. Blue
colored panel in (b) indicates where the pressure tendency is ≤ 1 hPa hr−1. 24

Figure 2.12 Top panel shows the feature detection field zoomed in on Massachusetts
for 7 February 2021 18:42 UTC. The bottom panel shows an example
time series of ASOS hourly precipitation rate valid from 7 February 2021
06 UTC to 08 February 2021 01 UTC (same as Fig. 2.7) and echo areas
calculated within 25 km of Boston, MA ASOS station (KBOS; purple dot
on map). Colored lines in time series correspond to background area
(teal), strong area (yellow) and faint area (orange) within 25 km of the
KBOS station (purple ring on top panel). Purple vertical line annotated
on time series indicates the time of the map in the top panel. . . . . . . . . 25

Figure 2.13 Several examples of echo patterns over a given time that would yield an
area × time fraction of 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 3.1 Image muting processing components for a radar regional map from
07 February 2020 at 13:27:58 UTC. (a) Radar reflectivity (dBZ) field. (b)
Correlation coefficient field. (c) Categories indicating regions that meet
the following conditions: correlation coefficient> 0.97 (dark blue), corre-
lation coefficient≤ 0.97 and reflectivity< 20 dBZ (green), and correlation
coefficient ≤ 0.97 and reflectivity ≥ 20 dBZ (gray). (d) Final image muted
product combining color scale for reflectivities in snow and rain regions
with gray scale to mute reflectivities in mixed precipitation regions. Green
ovals in (a) indicate banded features discussed in text. An animated ver-
sion of this figure is in Video Supplement Animation-Figure-3.1. . . . . . . 33

viii



Figure 3.2 Comparison of image muted regional map with detailed vertical cross-
section from NASA ER-2 X-band Doppler radar during a NASA IMPACTS
science mission on 07 February 2020. At 16:09:10 UTC, the aircraft is
located at the transition between snow and melting precipitation in the
radar regional map. (a) Image muted reflectivity valid at 16:11:03 UTC
with the ER-2 flight leg (green line), aircraft location corresponding to
time shown in bottom panel is at the arrow head along the leg. Locations
of ASOS observations in Fig. 3.4 are annotated with stars and black labels.
(b) Vertical cross-section of reflectivity from NASA EXRAD radar with
current aircraft location near the top of the vertical green line. Time at
right corresponds to aircraft position. The black X indicates the height of
the point in panel a that varies along the 0.5° elevation angle scans used
to construct the regional maps. An animated version of this figure is in
Video Supplement Animation-Figure-3.2. . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 3.3 Vertical cross-sections of (a) reflectivity and (b) vertical velocity from
NASA ER-2 EXRAD radar and (c) reflectivity and (d) linear depolarization
ratio (LDR) from NASA ER-2 CRS radar coincident with vertical cross
section in 3.2. Green line indicates current aircraft location and black X
indicates the height of the point in 3.2a that varies along the 0.5° elevation
angle scans used to construct the regional maps. . . . . . . . . . . . . . . . . . 35

Figure 3.4 Hourly ASOS precipitation rate and type [mm h−1] reports for 07 February
2020 from (a) KSYR, (b) KALB, (c) KBGM and (d) KHPN. Colors indicate
precipitation type as in legend in panel d. Red dashed line indicates
16:09:11 UTC, highlighted in Fig. 3.2. The y-axis range is larger in panel c
compared to other panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.5 Comparison of image muted regional map with reconstructed RHIs and
reanalysis temperature vertical cross-section from KOKX radar on 08
February 2013. (a) Correlation coefficient and (b) image muted reflectiv-
ity (dBZ) 0.5° elevation angle PPI plots for KOKX radar valid 08 February
2013 21:00:13 UTC. Green line in (a) and (b) indicates location of re-
constructed RHI cross-sections from (c) correlation coefficient and (d)
image muted reflectivity. (e) ERA5 reanalysis temperature cross-section
interpolated to the plane of the RHI. Black line in panel e indicates 0°C
isotherm. An animated version of this figure is in Video Supplement
Animation-Figure-3.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 3.6 Comparison of image muted regional map with reconstructed RHIs and
reanalysis temperature vertical cross-section from KDIX radar on 01 De-
cember 2019. (a) Correlation coefficient and (b) image muted reflectivity
(dBZ) 0.5° elevation angle PPI plots for KDIX radar valid 01 December
2019 17:37:49 UTC. Green line in (a) and (b) indicates location of re-
constructed RHI cross-sections from (c) correlation coefficient and (d)
image muted reflectivity. (e) ERA5 reanalysis temperature cross-section
interpolated to the plane of the RHI. Black line in panel e indicates 0°C
isotherm. An animated version of this figure is in Video Supplement
Animation-Figure-3.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

ix



Figure 4.1 Data flow diagram of the winter storm feature detection algorithm. Dark
blue ovals indicate processes, purple polygons indicate input and output
data, and orange elements indicate adjustable setting parameters used in
the functions. Each arrow represents an input or output to the associated
functions. The reflectivity field and background average field are 2D
arrays. The strong and faint snow features are represented by distinct
values in a 2D array. a) Top level data flows. b) The detailed steps within
"Step 3: Detect snow features" (blue) box in panel a). c) shows the detailed
steps within the "Find features" (green) boxes in panel b). . . . . . . . . . . 46

Figure 4.2 Reflectivity to snow rate (Z-S) relationships with log-scale x-axis. The
bold blue line indicates the relationship from Rasmussen et al. (2003)
for wet snow used in this study. The bold red line shows the relationship
for dry snow from Rasmussen et al. (2003) and the purple line shows the
relationship from Saltikoff et al. (2010). . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 4.3 Close-up examples of (a)-(c) Reflectivity [dBZ] rescaled to (d)-(f) snow
rate [mm hr−1] and smoothing of the snow rate fields to a (g)-(i) back-
ground average using a 40 km radius footprint. (a), (d), (g) from 7 Febru-
ary 2021 14:37:28 UTC, (b), (e), (h) from 17 December 2020 16:26:01 UTC,
and (c), (f), (i) from 17 December 2019 16:23:59 UTC. . . . . . . . . . . . . . . 49

Figure 4.4 Adaptive difference relationships used to determine the threshold be-
tween a pixel and its background value to designate the pixel as a feature
core. (a) cosine scheme and (b) scalar multiplier scheme. Panel (c) shows
the difference relationships in (a) and (b) and is shaded based on the
where each feature type is found. Note y-axis range in (b) extends further
than in (a) and (c). Input parameters used for tuning are annotated with
gray dashed lines, see text for full details. . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 4.5 Close-up examples of (a)-(c) snow rate [mm hr−1], (d)-(f) feature cores
detected with the cosine scheme, and (g)-(i) feature cores detected with
the scalar scheme. Same example dates and times as in Fig. 4.3. . . . . . . 53

Figure 4.6 (a) Example of binary closing operation (image morphology dilation then
erosion) from https://docs.opencv.org/4.x/d9/d61/tutoria
l_py_morphological_ops.html and (b) kernel used in binary closing
operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 4.7 Close-up examples of feature cores from cosine scheme before (a)-(c)
and after (d)-(f) binary closing and removal of small objects. The bottom
row represents the filtered cores. Same example dates and times as in
Fig. 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 4.8 Close-up examples of (a)-(c) filtered features from cosine scheme, (d)-(f)
filtered features from scalar scheme, and (g)-(i) feature detection output
wherein portions of objects labeled as strong were detected in the cosine
scheme and those labeled faint are only detected in the scalar scheme.
Same example dates and times as Fig. 4.3. . . . . . . . . . . . . . . . . . . . . . . 55

x

https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html
https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html


Figure 4.9 Demonstration of bounding the best estimate feature detection with
purposeful overestimates and underestimates using an example from 7
February 2021 14:37:28 UTC which features a primary snow band and a
few multi-bands. Locally enhanced features that include mixed precipi-
tation are image muted in gray (Tomkins et al. 2022). (a) Re-scaled snow
rate field (mm hr−1 units), Feature detection (b) best estimate, (c) under-
estimate, (d) overestimate. Feature detection fields show background
regions in teal, strong features in yellow, and faint features in orange.
An animated version of this figure is available in the Video Supplement
Animation-Figure-4.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 4.10 Demonstration of bounding the best estimate feature detection with
purposeful overestimates and underestimates using an example from
17 December 2020 06:26:01 UTC which features several strong primary
bands and a few faint multi-bands. Locally enhanced features that in-
clude mixed precipitation are image muted in gray. (a) Re-scaled snow
rate field (mm hr−1 units), Feature detection (b) best estimate, (c) under-
estimate, (d) overestimate. Feature detection fields show background
regions in teal, strong features in yellow, and faint features in orange.
An animated version of this figure is available in the Video Supplement
Animation-Figure-4.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 4.11 Demonstration of bounding the best estimate feature detection with
purposeful overestimates and underestimates using radar example from
17 December 2019 16:23:59 UTC which features many faint multi-bands.
Locally enhanced features that include mixed precipitation are image
muted in gray. (a) Re-scaled snow rate field (mm hr−1 units), Feature
detection (b) best estimate, (c) underestimate, (d) overestimate. Feature
detection fields show background regions in teal, strong features in yel-
low, and faint features in orange. An animated version of this figure is
available in the Video Supplement Animation-Figure-4.11. . . . . . . . . . . 61

Figure 4.12 Demonstration of bounding the best estimate feature detection with
purposeful overestimates and underestimates using radar example from
7 February 2020 13:27:58 UTC 17 which features a large primary band,
portions of which are mixed precipitation and image muted in gray. (a)
Re-scaled snow rate field (mm hr−1 units), Feature detection (b) best
estimate, (c) underestimate, (d) overestimate. Feature detection fields
show background regions in teal, strong features in yellow, and faint
features in orange. An animated version of this figure is available in the
Video Supplement Animation-Figure-4.12. . . . . . . . . . . . . . . . . . . . . . 62

xi
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tion field from NEXRAD regional mosaic at 27 January 2021 08:51:40 UTC
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Figure 5.8 Normalized 2D distributions of all feature (faint + strong) area × time
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Chapter 1

Introduction

1.1 Motivation

Winter storms in the northeast US cause significant societal and economic disruptions

to the densely-populated regions of the mid-Atlantic and New England (Kocin and Uccellini

2004; Novak et al. 2023). The US Department of Transportation estimates that weather-related

flight cancellations are twice as common in the winter compared to the summer (Guarino and

Firestine 2010).

Accurate forecasts of winter storms are crucial for school districts, emergency managers,

and transportation agencies to minimize the impacts from winter weather. Current numerical

weather prediction models struggle to accurately predict the timing, intensity, and duration of

snow. It is common for snowfall accumulation forecasts to have a range of a factor of two or

more (i.e. "3 to 6 inches of snow expected") which complicates the planning for storm impacts.

Small shifts of 10s of km in the cyclone track and/or temperature gradients can cause changes in

the location and timing of the rain-snow line and whether snow falls over a given metropolitan

area or during rush hour. Additionally, the forecast skill varies from event to event, so while

one event might be well-forecast, the next may not be (Novak et al. 2023).

Snowfall accumulations are dependent on the snow rate which also has important societal

impacts. Heavy snow rates make it difficult for snow plows to keep up with clearing roads and

create poor visibility conditions (Rasmussen et al. 1999). Additionally, heavy snow rates can

increase the risk for avalanches (Schweizer et al. 2003).

The general lack of skill in forecasting winter storms has motivated research to understand

the physical processes within winter storms. In this study, we address basic questions about

the structural characteristics of winter storms and the impact they have on surface snow fall.
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1.2 Definitions and Concepts

Descriptions of key terms for non-meteorologist readers.

• Radar reflectivity: Active remote sensing measure of the magnitude of backscattered

energy related to the characteristics of the set of precipitation particles in a scanned

volume. In rain, radar reflectivity is a function of the number and size distribution of

raindrops in a given volume. Generally, higher reflectivity values are associated with

higher total mass of raindrops per unit volume. In snow, the relation between volumetric

mass of ice and reflectivity is not monotonic and varies with the sizes, shapes, and

densities of ice particles in a volume.

• Doppler velocity: Active remote sensing measure of the component along the radar

beam of the precipitation-sized particle velocities in a given volume. Positive indicates

motion away from the radar and negative indicates motion towards the radar. For radars

that scan nearly at horizontal, Doppler velocity is indicative of horizontal wind motion.

For radars that point vertically, Doppler velocity is the sum of the vertical air motions

(upwards or downwards) and fall speed of precipitation (downwards).

• Instability: A condition where an air parcel continues to rise if perturbed upward from it’s

initial position. Instability is one cause of upward vertical motions and thus a contributing

factor in cloud and precipitation development. There are many types of instabilities in

the atmosphere associated with different vertical profiles of temperature, humidity, and

wind.

• Frontogenesis: The strengthening of a weather front. Frontogenesis occurs when the

temperature gradient along a front intensifies. Frontogenesis drives a circulation with up-

ward motion and is often accompanied by instability. Locations with strong frontogenesis

are usually favorable for precipitation development.

• Vapor Deposition: Water substance phase change from vapor to ice. Vapor deposition is a

key process in the initial formation of ice crystals and their growth from cloud-size (< 0.2

mm diameter, too small to fall) to precipitation-size (large enough to fall) particles. The

geometric shape of the depositional growth is a function of temperature and humidity.

• Riming: A process where super-cooled liquid droplets freeze on contact with precipitation-

size ice crystals. Riming adds mass to ice particles about 16x faster than vapor deposition.
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• Aggregation: A process where existing snow crystals collide and jumble together. Aggre-

gation yields individually larger ice particles but since it just rearranges the existing mass,

it doesn’t change the total ice mass in a given volume.

1.3 Background

Winter storms in the northeast US often develop elongated features of enhanced reflectivity

referred to as snow bands. Bands that are longer than 200 km are called primary bands and

are associated with strong frontogenesis at low- and mid-levels in the storm(Fig. 1.1; Novak

et al. 2004, 2010; Ganetis et al. 2018). Bands that are shorter than 200 km and typically occur in

groups are known as multi-bands. Most previous work related to winter storms has focused on

primary bands and understanding their associated physical mechanisms (Novak et al. 2004,

2008, 2009, 2010; Novak and Colle 2012; Kenyon et al. 2020; Baxter and Schumacher 2017;

Stark et al. 2013). The relationship between multi-bands and frontogenesis is not clear as

multi-bands are found in environments with strong, positive to negative frontogenesis (Fig. 1.2;

Ganetis et al. 2018; Nicosia and Grumm 1999; Connelly and Colle 2019). Shields et al. (1991)

and Ganetis et al. (2018) have suggested conditional symmetric instability as a mechanism for

multi-band production but the relative importance of this type of instability in comparison to

other types of instabilities is a topic of active research. Hoban (2016) found winter storms in

the northeast US with multi-bands often exhibited wave-like features in the Doppler velocity

field, known as velocity waves (Miller et al. 2022), suggesting multi-bands may be associated

with wave activity. The lack of consistent signal between multi-bands and forcing mechanisms

such as frontogenesis and instability makes these snow bands particularly difficult to forecast.

As part of this study, we examine recent field campaign observations of the detailed 3D

structures of winter storms including vertically-pointing radar observations from aircraft

deployed during the recent NASA IMPACTS field campaign (McMurdie et al. 2022) and vertical

cross-sections from ground-based radars at Stonybrook University (KASPR; Oue et al. 2017).

These research-quality observations provide new insights into typical vertical structures in

winter storms including physical processes, and their relation to snow bands as detected in the

coarser resolution radar data from the National Weather Service operational radars.

Most previous work on snow bands in northeast US winter storms has focused on case

studies or small sample sizes with high snowfall accumulations (Picca et al. 2014; Varcie et al.

2022; Ganetis and Colle 2015; Novak et al. 2008; Han et al. 2007; Colle et al. 2014; Clark et al.

2002; Lackmann and Thompson 2019). While case studies can provide valuable information,

they may not be representative of the relative importance of the roles of different physical

processes in a large sample of winter storms. Case studies often focus on extreme events with
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Figure 1.1: Conceptual diagram of the environments associated with (a) primary band event and (b)
non-banded event. Regions of frontogenesis are shaded in red. Other key features described in legend.
Figure 15 from Novak et al. (2004).

Figure 1.2: Distribution of 700-800 hPa frontogenesis for each event colored by types of bands present.
Figure 10 from Ganetis et al. (2018).
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the most intense impacts which may not be generalizable to more typical events.

A complicating factor in the analysis of winter storms using weather radar observations

is the interpretation of radar reflectivity in snow. In warm-season precipitation systems it

is reasonable to deduce that locally-enhanced radar reflectivity features are associated with

stronger rain rates at the surface but that is not necessarily the case in cool-season precipitation

systems. In snow, changes in radar reflectivity do not necessarily equate to changes in mass per

unit volume as in rain (Table 1.1). Processes such as aggregation and partial melting increase

the radar reflectivity but do not change the mass per unit volume which complicates the

interpretation of radar reflectivity in winter storms.

Table 1.1: Table of microphysical processes and their associated change to mass per unit volume
(IWC/LWC) and to radar reflectivity.

Process Change to IWC/LWC Change to radar reflectivity
Riming Increase Increase

Vapor Deposition Increase Increase
Collision-Coalescence Increase Increase

Condensation Increase Increase
Aggregation No change Increase

Melting No change Increase
Evaporation Decrease Decrease
Sublimation Decrease Decrease

Freezing No change Decrease
Fragmentation No change Decrease

Raindrop Breakup No change Decrease

Observations of ice water content (IWC) and radar reflectivity collected during research

flights as part of the SNOWIE field campaign in the mountains of Idaho (Tessendorf et al.

2019) describe the relationship between IWC and reflectivity in ice clouds and light snow (Fig.

1.3; Zaremba et al. 2023). For a given radar reflectivity value, there is a wide range of possible

associated IWC values. Similarly, for a given IWC value, there is a wide range of possible radar

reflectivity values. Overall, for these data obtained in light falling snow as IWC increases radar

reflectivity increases but even for this simple case without much aggregation or any partial

melting the spread of the values makes it difficult to quantify volumetric ice mass as a function

of radar reflectivity better than a factor of 2.

Snow falls slowly (∼ 1 m s−1) compared to rain (∼ 5 m s−1) so it is more easily transported by

the horizontal winds of ≥10 m s−1 and rarely falls straight to the surface further complicating

the interpretation of radar reflectivity aloft. The work we present here demonstrates that locally-
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Figure 1.3: 2D distribution of ice water content (IWC) [g m−3] from Nevzorov liquid water and total
water content probe and radar reflectivity [dBZ] from the W-band Wyoming Cloud Radar (WCR) deployed
on the University of Wyoming King Air (UWKA) aircraft during the SNOWIE field campaign. Figure 6
from Zaremba et al. (2023).
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enhanced reflectivity features are rarely associated with heavy surface snow rates which argues

that bands not strongly-forced (by frontogenesis or otherwise) are distracting when it comes to

nowcasting (forecasting out to less than 6 hours) regions with heavy snow rates.

1.4 Thesis Organization

The overarching goal of this study is to explore and understand the relationships between

surface snow rates and locally-enhanced reflectivity features (i.e. snow bands), Doppler radar

observed velocity waves, and storm structures. Previous research related to storm structures

and snow rates has primarily focused on the portions of winter storms with strong frontogenesis.

We use a large sample size to address the full range of conditions in northeast US storms yielding

at least 1-inch of snow in a 24 hour period. We use observations from 264 storm days in the

northeast US from over 10 years (2012-2023) to ensure we are studying the relationships over

a representative sample. To explore the relationship between locally-enhanced reflectivity

features and surface snow rates we use regional radar mosaics created from National Weather

Service NEXRAD radars and hourly precipitation rates from ASOS stations. The relationship

between velocity waves and surface snow rates is examined by comparing the precipitation rates

during hours when waves were present to hours when waves were not present. To understand

the relationship between storm structures and surface snow rates, we analyze distributions of

precipitation rate related to the distance from the storm’s low pressure center and the pressure

tendency.

Chapter 2 will document all data and methods used to analyze winter storms with the

exception of two techniques that have been published and submitted as individual manuscripts

and are included in their own separate chapters. Chapter 3 describes our technique for image

muting radar reflectivity data and has been published in Atmospheric Measurement Techniques.

Chapter 4 explains the method we developed to objectively identify locally-enhanced features

in the radar data and is in review in Atmospheric Measurement Techniques. Both of these

chapters include their own relevant introduction data, and methods sections. Chapter 5 will

present the results from examining locally-enhanced reflectivity features and velocity waves in

radar data and their relationship to surface snowfall rates. Chapter 6 examines the relationship

between storm structures and surface snowfall rates. Chapter 7 will present the summary and

conclusions.
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Chapter 2

Data and Methods

To understand how different characteristics of winter storms impact the surface snowfall,

we combine several types of observations for a large sample size of observed storms. This

chapter as well as chapters 3 and 4 document both the datasets and methodology used in this

study.

Since two papers detailing specific methods have already been accepted and submitted,

the material on Data and Methods is organized in the following manner. This chapter covers

data and methods that are relevant to the portions of the work that has not yet been submitted

for publication. Chapter 3 covers our image muting technique to remove regions of melting

and mixed precipitation in our analysis and Chapter 4 covers our algorithm for objectively

identifying enhanced reflectivity in radar data. These chapters containing papers are self

contained in the sense that they include their own Introduction, Data and Methods, Results,

and Summary sections.

2.1 Winter Storm Dataset

We created a dataset of northeast US winter storm events between 2012 and 2023 following

the methodology of Hoban (2016) and Ganetis et al. (2018). We define a winter storm as any date

between October-March 2012-2023 where at least 1 inch of snow was reported over a 24-hour

period at at least two out of 14 stations shown in Fig. 2.1. We used a threshold of 1 inch to

include a wide range of storms in our analysis and not only those that produce a large amount

of snow accumulation. The daily data at each station was gathered from the Global Historical

Climatology Network daily (GHCNd) database (Menne et al. 2012). We selected the stations in

Fig. 2.1 to include storms that were impactful to the more densely-populated regions of the

8



northeast US and to avoid identifying events that were lake-effect snow events. Our sample

consists of 264 storm days from 2012-2023. The years 2012-2023 were chosen as this is when we

have dual-polarization radar data available. Using radar data with dual-polarization products

available allows us to "image mute" and remove remove melting and mixed precipitation

observations, often confused for heavy snow, from our analysis (discussed in Sec. 2.2.2). The

full list of storms is includes in Appendix A.

Figure 2.1: ASOS stations where daily snowfall accumulation is used to define a winter storm in this
analysis.

2.2 Radar Observations

We use radar observations from the National Weather Service (NWS) Next-Generation Radar

(NEXRAD) network in the northeast US to analyze features of the radar reflectivity and Doppler

velocity field in winter storms. All NEXRAD data were obtained from the NOAA archive on
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Amazon Web Services (Ansari et al. 2018). Our radar data processing utilizes the open-source

Python Atmospheric Radiation Measurement (ARM) Radar Toolkit (Py-ART) developed by the

Department of Energy ARM Climate Research Facility (Helmus and Collis 2016).

The NEXRAD radars scan 360° in azimuth over a set of elevation angles. In this analysis we

primarily use the elevation angle at 0.5° above the horizon. The radar beam widens the further

it is from the radar itself. This means that observations closer to the radar have a higher spatial

resolution than those further away and the observations further away from the radar are more

susceptible to non-uniform beam filling.

2.2.1 Regional Radar Mosaics

We combine data from multiple radars in the northeast US into a continuous mosaic.

The radars used to create the mosaics are presented in Table 2.1 and shown in Fig. 2.2. The

procedure to create the regional radar mosaics is detailed in Sec 3.2.1.

Table 2.1: List of radar names and locations used in the analysis. The central radar, KOKX, is annotated
in bold.

Radar Location
KOKX New York City, NY
KBOX Boston, MA
KDIX Philadelphia, PA
KDOX Dover, DE
KENX Albany, NY
KGYX Portland, ME
KTYX Montague, NY
KBGM Binghamton, NY
KBUF Buffalo, NY
KLWX Sterling, VA
KCCX State College, PA
KCXX Burlington, VT

2.2.2 Image muting of mixed precipitation

One goal of this project is to understand the relationship between locally-enhanced reflec-

tivity features and surface snow rates. However, enhanced radar reflectivity in winter storms

does not always indicate regions of enhanced ice mass. Transitions between snow, rain, and

partially-melted snow are common in winter storms which complicates the interpretation of
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Figure 2.2: Map of NEXRAD radar locations (red stars). Shaded circles indicate 200 km radius used for
reflectivity mosaics and blue dashed lines indicate 117 km radius used for velocity wave mosaics.
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reflectivity since melting and mixed precipitation have higher reflectivities than volumes of

only ice or only liquid particles of the same mass. We have developed a technique, called "image

muting", which locates regions of mixed or melting precipitation by combining information

from the dual polarization product, correlation coefficient. A journal article describing this

technique, Tomkins et al. (2022), has been accepted and published in Atmospheric Measure-

ment Techniques and is included as Chap. 3. We remove muted regions identified as mixed and

melting precipitation from our analysis and reduce the visual prominence of these regions in

our visualizations.

2.2.3 Objective detection of local reflectivity enhancements

Identifying and locating regions of locally-enhanced reflectivity can often be subjective

and inconsistent from observer to observer. To mitigate this, we developed a technique that

objectively identifies local enhancements in radar observations. Previous methods to detect

enhancements in enhanced reflectivity features in the rain layers of storms, such as convective

precipitation cells, did not work well for detecting snow bands which are more subtle in terms

of relative differences compared to the background values and have more diffuse edges. A

manuscript documenting the technique in detail is in review at Atmospheric Measurement

Techniques and is included as Chap. 4. This technique is unique in the sense that it uses two

adaptive thresholds to identify objects based on their distinctness (faint or strong) from the

background average. This technique is also unique in the sense that we identify objects in a

snow rate field that has been rescaled from reflectivity in order to represent the field more

linearly in snow. The algorithm outputs a feature detection field which classifies points as "faint

feature", "strong feature", or "background" which is used throughout this analysis to quantify

the area of locally-enhanced reflectivity in radar observations.

2.2.4 Velocity Wave Mosaics

Velocity waves are calculated using the methods described in Miller et al. (2022) and Hoban

(2016) whereby sequential scans of dealiased radial velocity are subtracted to obtain a difference

field, which represents a temporal change in the radial velocity field. To discern separation

between elements in the difference field, we apply a threshold to the difference field to create a

binary wave field.

We calculate the waves on the first 0.5° elevation angle with velocity data available from each

volume scan. Before calculating the wave field, we must dealias the velocities. The dealiasing

works best with minimal noise and clutter so before dealiasing we remove small speckles in

the velocity data and we mask data where the reflectivity is < 0 dBZ or invalid. Scan strategies,
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and thus unambiguous ranges, vary between radars and time. We subset all velocity scans

to a consistent range of 117 km to reduce the visual artifacts associated with changing scan

strategies (see blue dashed circles in Fig. 2.2). 117 km was chosen as it is one of the shortest

unambiguous ranges commonly used in this region during the cool season. We unfold the

velocities using a region based algorithm developed by Py-ART (Helmus and Collis 2016).

Once we have the subset, trimmed, and dealiased velocity scans, we subtract sequential

scans which yields a difference field (Fig. 2.3a–c). We apply a threshold to the difference field

to obtain a binary field by setting the wave field to a value of 1 where the difference is <-1 m s−1

and a value of zero otherwise (Fig. 2.3d). We chose the value of -1 to not include difference

values close to zero where there is a lot of noise.

For velocity waves moving towards a radar, positive values in the difference field (i.e. time

2 velocity > time 1 velocity) indicate acceleration and and negative values in the difference

field (i.e. time 2 velocity < time 1 velocity) indicate deceleration. The sign of the difference field

values reverses for waves moving away from the radar so that positive values are associated

with deceleration. The binary flagged areas in the maps would have horizontal convergence for

waves moving towards the radar and horizontal divergence for waves moving away from the

radar. Since the interpretation of acceleration and deceleration is dependent on the motion

relative to the radar it is challenging to directly map specific regions of convergence and

divergence across the entire radar domain. Detection of velocity waves indicates regions of

banded acceleration and deceleration in the wind field, and associated bands of convergence

and divergence which in turn imply regions of upward and downward motion (Miller et al.

2022, their Figs. 3 and 4). We cannot get information about the velocity waves when the radar

beam is perpendicular to the flow (Miller et al. 2022).

Up to this point the fields were kept in their native, polar coordinates, but in order to

combine the fields from multiple radars we interpolate to a common grid. Similar to the radar

reflectivity mosaics, the common grid is centered on KOKX, however, for the wave fields we

interpolate to a 0.5 km Cartesian grid using a nearest neighbor technique, as opposed to

Cressman weighting. After interpolating, we remove small speckles less than 16 km2 (Fig. 2.3e).

To combine wave fields from multiple radars, instead of taking the maximum value where

points overlap as we did with the reflectivity mosaics, we take the value from the southernmost

radar. There are less regions of overlap between radars compared to the reflectivity mosaics

since we subset the wave fields to a smaller range (117 km instead of 200 km; Fig. 2.2). An

example of the combined velocity wave field is shown in Fig. 2.4.
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Figure 2.3: Step-by-step wave detection method illustrated using sequential PPI scans of radial velocity
from NWS KOKX radar in Upton, NY, on 26 December 2010. Polar coordinate radial velocity fields at 0.5°
elevation angle for consecutive scans at (a) 23:40:00 UTC and (b) 23:45:47 UTC. (c) The difference field
computed from PPIs (b) minus (a) showing both positive and negative temporal velocity changes. (d)
Binary version of the negative portion of the difference field from (c). (e) Cartesian coordinate (0.5 km
grid spacing) filtered version of (d) with eight-connected areas < 16 km2 removed. Figure 2 from Miller
et al. (2022).
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Figure 2.4: An example of the velocity wave mosaic from 27 December 2020 09:17 UTC. Red box
indicates Massachusetts region and blue box indicates New York City region for classifying waves
(discussed in Sec. 2.2.5).
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2.2.5 Classifying velocity wave presence

To understand the relationship between velocity waves and snow rate, we classify wave

presence over the hour. Unlike the feature detection field, it is difficult to automate an algorithm

to detect waves in the velocity wave field so we do a manual classification. We only consider

the presence of waves in two sub-regions of the domain, the first region centered over NYC

(blue box in Fig. 2.4) and the second centered over Massachusetts (red box in Fig. 2.4). We

chose these two smaller regions as they are both densely-populated regions and they contain a

relatively large number of ASOS stations that we can analyze with (6 in the NYC box and 4 in

the MA box).

Each region and hour in the 264 day subset was classified by two undergraduate students.

The students classified the presence of waves for each hour as "YES", "NO" or "MAYBE". For

an hour to be considered a "YES" there must have been waves present throughout the entire

region for the entire hour. If waves were present but not necessarily in the entire region or

for the entire hour, they were classified as a "MAYBE". Hours were classified as "NO" if there

were no waves present in the region for the hour. For the analysis, we combine the "YES" and

"MAYBE" categories. One student went back through the classifications and reconciled the

times when the two original student’s classifications disagreed. The number of hours of each

classification for both the NYC and Massachusetts region are presented in Table 2.2. While

waves are generally rare for a given geographic region, Hoban (2016) found velocity waves in

50% of winter storms so it is worthwhile to understand their impacts on surface snow rates.

Table 2.2: Number of hours each wave classification was observed for each region.

Wave ID NYC No. Hours MA No. Hours
YES 60 66

MAYBE 134 112
NO 5986 6002

No data 156

2.3 Hourly surface station observations

Hourly observations from 29 ASOS stations in the northeast US are used to quantify the

liquid equivalent snowfall rates for each winter storm day (Fig. 2.5). The hourly snowfall rates

represent hourly liquid equivalent accumulation and are not instantaneous snow rates. ASOS
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data is obtained through the MADIS database. Measuring snow in rain gauges at ASOS stations

can be challenging as snow is easily blown sideways by the wind and doesn’t always make it into

the gauge (Rasmussen et al. 2012). To ensure we are getting the best measurements, we are only

using ASOS stations equipped with all-weather precipitation accumulation gauges (AWPAG)

as these gauges are more skilled at measuring liquid equivalent snow accumulation than other

types of gauges (Martinaitis et al. 2015). The AWPAG sensors are equipped with Tretyakov or

double Alter style shields, which are more accurate at measuring frozen precipitation than

gauges with no shields (Rasmussen et al. 2012). AWPAG sensors do not have a heated rim and

thus are subject to capping, although it is difficult to estimate how often this occurs in our

dataset. If capping does occur, no snow would be reported for an hour. To further ensure that

we are using reliable observations, only quality-controlled observations when the wind speed

is < 5 m s−1 are used in our analysis (Rasmussen et al. 2012). The collection efficiency of frozen

precipitation is 1.0 at 0 m s−1 and drops to 0.25 at 6 m s−1 for double Alter-shielded gauges

which is why we chose a threshold of 5 m s−1 (Rasmussen et al. 2012). The wind speed threshold

removes ∼45% of hourly snow observations, but relatively uniformly over the entire range of

precipitation rate observations (Fig. 2.6). That is, the wind speed threshold is not only removing

observations with heavy or light precipitation rates. Observations are only used in the analysis

if the station has reported snow for at least 4 hours to ensure we are using observations from

consistent snow observations, and not any short-lived, low-impact events.

Following the guidelines created by the Society of Automotive Engineers International

Ground Deicing Committee and NCAR, we use a liquid equivalent precipitation rate threshold

of 2.5 mm hr−1 to distinguish heavy snow from light (<1 mm hr−1) and moderate (1-2.5 mm hr−1)

snow (Rasmussen et al. 2001). We will only use the term heavy to describe the snow rates

>2.5 mm hr−1.

We attempted to use visibility reported from the ASOS stations as visibility is commonly

used to determine snowfall intensity (Rasmussen et al. 1999), however, the relationship between

visibility and precipitation rate was too inconsistent for it to be meaningful. Details can be

found in Appendix B.

An example time series of precipitation rate from Boston, MA on 7 February 2021 is shown

in Fig. 2.7. Hourly observations that are used in the analysis are represented by a blue bar

spanning the hour that the precipitation accumulates. Trace values (0 mm hr−1) are considered

in the analysis, but observations where no precipitation fell are not. The example also indicates

observations not used in the analysis where the wind speed threshold is exceeded (plus sign in

Fig. 2.7).
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Figure 2.5: Map of ASOS stations (blue dots) used in the analysis. Blue ring surrounding ASOS stations
indicates 25 km radius. Red stars and red ring indicate NEXRAD stations and a 200 km radius used to
create radar mosaics in Sec. 2.2.

Figure 2.6: Histograms of Liquid Equivalent Precipitation Rate [mm hr−1] for observations ≤ 5 m s−1

(blue) > 5 m s−1 (red) presented on a (a) linear y-axis scale and (b) log y-axis scale.

18



Figure 2.7: Example time series of liquid equivalent precipitation rate [mm hr−1] from the Boston, MA
ASOS station (KBOS) from 7 February 2021 06:00 UTC to 8 February 2021 01:00 UTC. Precipitation rates
are represented as a bar spanning the hour they were accumulated. Plus signs indicates times when the
wind speed is > 5 m s−1 and T indicates times when trace amounts of precipitation where observed.

2.4 Low pressure center tracks

For each winter storm, we found storm tracks from the ERA5 hourly reanalysis mean sea

level pressure (Hersbach et al. 2020) using the methods of Crawford et al. (2021). We subset

the global 0.25° resolution ERA5 mean sea level pressure (MSLP) field to the region of Eastern

North America (-90 to -60°E, 25 to 55°N). For a given winter storm day, we track over ± 1 day to

capture the full evolution of a given low pressure system. To find a single minimum for a given

time, we first find all the local minima in the MSLP field using a 200 km search radius. Unlike

Crawford et al. (2021), we are using the ERA5 data in native coordinates, so the grid size in km

varies slightly between grid boxes. We only consider minima where at least 75% of the data

within the footprint are valid to avoid finding minima along the edges of the subset Eastern

North America field. Following Crawford et al. (2021), minima found from the MSLP field are

only considered if they have a pressure gradient of at least 7.5 hPa/1000 km. We compared the

low pressure center minimum to the set of pressures at 200 km range from the low pressure

center. To meet the threshold criteria, the mean difference between minimum pressure and

the set of pressures at 200 km range must be at least 1.5 hPa. Once all the local minima have

been found for the entire period, we then loop through the period again to select a single

minimum for each time since there may be no minimum, one minimum, or multiple minima

for each time. In the case of multiple minima we choose the minimum that meets most of the

following: minimum which is closest geographically to the previous minimum, minimum with
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the strongest pressure gradient, and the minimum with the lowest MSLP value. If the closest,

strongest, and deepest minima are all different points, we choose the closest minima. If the

next point is more than 200 km away from the previous point, we consider this a new system

and new track. We filter the tracks to remove tracks that travel less than 250 km or exist for

less than 6 hours. Finally, we remove any points on the tracks where the MSLP is greater than

1010 hPa.

Figure 2.8 shows an example of a storm track on 5 December 2020. All tracks between 2012

and 2023 that meet our winter storm criteria defined in Section 2.1 are shown in Fig. 2.9a and

the density of all the tracks is shown in Fig. 2.9b. The density of tracks shows a clear tendency

for low pressure centers over the ocean moving northeast along the coast (Fig. 2.9b, Bentley

et al. 2019). There is a lack of low pressure locations along/to the east of the Appalachian

mountains which we suspect is due to our criteria for determining a winter storm. Since we

are only looking at events where stations along the coast and slightly inland (Fig. 2.1) in the

northeast US produce snow, tracks that come up the Appalachian corridor may not produce

enough snow at the surface to be considered in our dataset. Figure 2.9b shows a high density of

low pressure tracks off the East coast and a low density of tracks inland along the Appalachian

mountains. This pattern is consistent with climatological studies of cyclone tracks (e.g., Bentley

et al. 2019). Figure 2.10 from Bentley et al. (2019) shows extratropical cyclone track densities

created from National Centers for Environmental Prediction (NCEP) Climate Forecast System

Reanalysis (CFSR) which are consistent with our track densities in Fig. 2.9b.

Figure 2.11 shows a time series of the subset of tracks used in the analysis (2012-2023)

normalized by the minimum pressure. For a portion of our analysis we further subset the

dataset using a 3-hour pressure tendency threshold of -1 hPa hr−1 (Fig. 2.11b). The structure

and evolution of winter storms is largely governed by the large-scale low pressure system,

so information about the location and strength of the system is very useful when analyzing

cool-season precipitation systems. We use the low pressure center track to put hourly ASOS

observations in a Lagrangian framework. Additionally, we examine the relationship between

the hourly ASOS observations and the strength of the low pressure center and distance to the

low pressure center.

2.5 Area × Time fraction

A main goal of this project is to understand the impact that locally-enhanced reflectivity

features have on the hourly surface snow rates. To accomplish this, we focus on the echo

classified as features (from the methods discussed in Sec. 2.2.3) within 25 km of the ASOS

station. The regional radar mosaics occur every 5-10 minutes, so in order to distill the echo
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Figure 2.8: An example low pressure track for 5 December 2020. Map of geographic location of low
pressure system (top panel) and time series of low pressure system (bottom panel) colored by MSLP
value as in legend. Period covers 4 December 2020 00 UTC to 6 December 2020 23 UTC.
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Figure 2.9: Map of (a) all tracks of low pressure centers and (b) density of low pressure center locations
for events between 2012-2023.

area over the hour, we created an integrated metric called the area × time fraction. Figure 2.12

visualizes the echo area data that goes into calculating the area × time fraction. Most of the

analysis uses the area × time fraction calculated for the echo classified as features (both strong

and faint; yellow and orange echo in Fig. 2.12) surrounding a station, but a small part of the

analysis uses the background area × time fraction which is calculated only using the echo

classified as background (teal echo in Fig. 2.12).

To calculate the area × time fraction we sum the area surrounding the station within 25 km

for that hour and then we divide by the total seconds in an hour and the total area surrounding

the station within 25 km which leaves us with a unitless fraction. Fig. 2.13 demonstrates 3

scenarios (of many) that would yield an area × time fraction of 0.5. An area × time fraction of 1

would indicate the entire surrounding region is filled with feature echo for the entire hour and

a fraction of 0 would indicate no feature echo in the surrounding region for the entire hour.
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Figure 2.10: Track density of (a) ordinary extratropical cyclones and (b) extratropical cyclones leading
to extreme weather events during October-March 1979-2016. Figure 8 from Bentley et al. (2019).
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Figure 2.11: Time series of all low center pressure tracks between 2012-2023 normalized by the mini-
mum pressure at time t=0. (a) low center pressure [hPa] and (b) 3-hour pressure tendency [hPa hr−1] of
low pressure centers. Blue colored panel in (b) indicates where the pressure tendency is ≤ 1 hPa hr−1.
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Figure 2.12: Top panel shows the feature detection field zoomed in on Massachusetts for 7 February
2021 18:42 UTC. The bottom panel shows an example time series of ASOS hourly precipitation rate valid
from 7 February 2021 06 UTC to 08 February 2021 01 UTC (same as Fig. 2.7) and echo areas calculated
within 25 km of Boston, MA ASOS station (KBOS; purple dot on map). Colored lines in time series
correspond to background area (teal), strong area (yellow) and faint area (orange) within 25 km of the
KBOS station (purple ring on top panel). Purple vertical line annotated on time series indicates the time
of the map in the top panel.
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Figure 2.13: Several examples of echo patterns over a given time that would yield an area × time
fraction of 0.5.
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Abstract In winter storms, enhanced radar reflectivity is often associated with heavy snow.

However, some higher reflectivities are the result of mixed precipitation including melting

snow. The correlation coefficient (a dual-polarization radar variable) can identify regions of

and mixed precipitation, but this information is usually presented separately from reflectivity.

Especially under time pressure, radar data users can mistake regions of mixed precipitation

for heavy snow because of the high cognitive load associated with comparing data in two

fields while simultaneously attempting to discount a portion of the high reflectivity values. We

developed an image muting method for regional radar maps that visually deemphasizes the

high reflectivity values associated with mixed precipitation. These image muted depictions

of winter storm precipitation structures are useful for analyzing regions of heavy snow and

monitoring real-time weather conditions.

3.1 Introduction

Weather radar data from ground-based scanning radars are crucial for monitoring the loca-

tion, intensity, and evolution of storms. Winter storms in mid-latitude regions often contain

subregions with rain, mixed precipitation, and snow that move and evolve over the storm life-

time (Schultz et al. 2019). Higher radar reflectivity values are generally associated with heavier

precipitation. But the transition among rain, partially melted snow, and snow precipitation

types creates a challenge when interpreting radar reflectivity because volumes with melting

precipitation have higher reflectivities than volumes with the equivalent precipitation mass

of only ice hydrometeors or only liquid hydrometeors (Vivekanandan et al. 1994; Straka et al.

2000; Rauber and Nesbitt 2018).

In particular, the changes in phase from ice to partially melted ice and then to rain modify

the dielectric constant of the particles so that volumes with the same precipitation mass per

unit volume can have different reflectivity values (Battan 1973). When analyzing banded snow

features in winter storms, areas of mixed precipitation can be distracting and misleading (e.g.

Picca et al. 2014). We define mixed precipitation as precipitation that includes combinations

of rain or freezing rain, snow, sleet, and partially-melted snow.

Regions of mixtures of precipitation types can be identified with the dual-polarization

radar variable known as the correlation coefficient (ρH V ) (Table 3.1; e.g. Vivekanandan et al.

1994; Straka et al. 2000; Kumjian 2013a). Correlation coefficient is a statistical measure of

how consistent the shapes and sizes of particles are within a radar resolution volume (Rauber

and Nesbitt 2018). This variable is insensitive to radar calibration and yields comparable

values for the same set of hydrometeors across radar networks with identical hardware and

signal processing methods. Correlation coefficient is approximately one in regions with single
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hydrometeor types (i.e. only rain or only snow) and decreases in regions where there is an

increasing diversity of hydrometeor orientations and shapes (i.e. mixed precipitation such as

rain with snow and/or partially melted ice) (Giangrande et al. 2008; Rauber and Nesbitt 2018).

Additionally, correlation coefficient can have low values in various types of ground clutter and

is used in identifying non-meteorological echo (e.g. Zrnić et al. 2006; Alku et al. 2015; Kumjian

2013b).

Table 3.1: Correlation coefficient values associated with physical mechanisms that increase radar
reflectivities when Z > 20 dBZ and other conditions are held constant.

Description
Increase number of ice

particles in snow
Increase size of ice
particles in snow

Mixtures of partially-
melted ice, ice, and rain

Change to water substance
mass per unit volume

Increases Increases No change

ρH V value ∼ 1 ∼ 1 < 0.97

With increasing range from a radar, radar resolution volume size increases and signal to

noise ratio (SNR) decreases. For example near the melting layer, larger radar resolution volumes

are more likely to have non-uniform beam filling than smaller radar resolution volumes. In

theory, non-uniform beam filling would tend to decrease correlation coefficient (Ryzhkov 2007).

Unlike radars that transmit at horizontal and vertical polarizations, the NEXRAD radar transmits

at a single polarization oriented at 45 degrees. The current method used to compute correlation

coefficient in US NEXRAD operational radars yields increased values with decreasing SNR (Ivić

2019). In practice, the impact of SNR tends to be much more prevalent than non-uniform beam

filling. This suggests that the SNR effect masks most of the effects of non-uniform beam filling

in NEXRAD correlation coefficient data quality.

Since reflectivity, correlation coefficient, and hydrometeor types are usually presented as

separate products (NOAA 2017), someone wanting to discern regions of heavy snow versus

mixed precipitation in a winter storm needs to toggle back and forth among different products

or overlay them. Neural science studies show that switching between sources of information

increases the cognitive load of a task (Sweller et al. 2011; Harrower 2007). Keeping track of chang-

ing shapes of moving objects is particularly challenging (Suchow and Alvarez 2011). Integrating

related material and removing irrelevant material is essential for maximizing understanding

and learning (Mayer and Moreno 2003; Sweller et al. 2011; Harrower 2007).

In order to reduce the cognitive load associated with analyzing precipitation structures in

reflectivity, we propose a new visualization technique we refer to as "image muting". Image

muting aids interpretation of sequences of radar data in movie loops. We plot the reflectivities
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using a perceptually uniform, color-blind-friendly color scale and the subset of reflectivity

values corresponding to mixed precipitation using a gray scale of matching perceptual lightness.

This visualization does not remove areas of melting but rather "mutes" them, making the

regions stand out less than the snow-only or rain-only portions of the storm. Work by Calvo

et al. (2021) demonstrates how making small changes in climate visualizations can reduce the

cognitive load and support analysis and potential decision making.

Our image muting technique is described in detail in Sect. 3.2, and applications of our

technique are presented in Sect. 3.4.

3.2 Methods

To demonstrate the methodology, we used Level-II data from several National Weather

Service (NWS) Next-Generation Radar (NEXRAD) network radars in the northeast United States

(US) that were obtained from the NOAA Archive on Amazon Web Services (Ansari et al. 2018).

Complete volume scans are available from each radar approximately every 5 to 10 minutes.

This technique can be applied to any radar data set that has both reflectivity and correlation

coefficient fields.

3.2.1 Regional Mapping

We combine data from several radars to create regional radar maps utilizing functions in

the open source Python Atmospheric Radiation Measurement (ARM) Radar Toolkit developed

by the Department of Energy ARM Climate Research Facility (Py-ART; Helmus and Collis 2016).

We first extract the first 0.5° elevation angle plan-position indicator (PPI) from each volume

scan. We do not interpolate to a constant altitude in order to preserve as much fine-scale detail

in the reflectivity and correlation coefficient structures as possible. We include only data within

200 km range from a radar as this is sufficient for combining data from multiple radars in

much of the continental US without substantial gaps and constrains the beam center to be

below 4 km altitude above radar level. The polar coordinate data from each individual radar

are interpolated using Cressman weighting (Cressman 1959) to a Cartesian grid covering our

geographic region of interest. Before interpolating, we convert the reflectivity from units of dBZ

to units of mm6 m−3 because interpolating in linear reflectivity units provides a more accurate

representation of the polar data (Warren and Protat 2019). We interpolate each polar radar

object used in the regional map to the same Cartesian grid with 2 km grid spacing. For the

northeast US regional maps shown in this paper, the regional grid is 1201 km x 1201 km. We

convert the reflectivity back to dBZ after the interpolation step. Finally, to combine data from

30



all the radars into a single object, we designate a "central radar" to stitch all the other radars

to. For storms in the northeast US, we use the Long Island, NY (KOKX) radar as the central

radar. For each volume scan at KOKX, we find the closest time from the other radars (within

8 minutes). For grid points where coverage from adjacent radars overlaps, we use data from

the radar with the maximum reflectivity value and its corresponding correlation coefficient

value. Use of the maximum reflectivity value means adjacent points can be from 0.5° elevation

angles from different radars yielding discontinuities in altitude of up to 4 km. Since our main

research application is identifying snow bands and lighter versus heavier regions of snow,

having adjacent points not continuous in altitude was an acceptable trade off. Before plotting

the fields, we despeckle the data to remove areas of echo that are less than 20 km2.

3.2.2 Identification of mixed precipitation

In effect, we are implementing a hydrometeor identification for only mixed precipitation. We

simplify the radar data visualization by choosing this one hydrometeor category to deemphasize

in the reflectivity field. We identify grid points where the hydrometeors are partially melted

and/or mixed rain and snow, where the ρH V is below a threshold of 0.97, and where the

reflectivity values is greater than or equal to 20 dBZ. We used 0.97 following Giangrande et al.

(2008) who found that the correlation coefficient for dry snow exceeded this value. Adding the

criterion of reflectivity ≥ 20 dBZ was essential in distinguishing regions of melting or mixed

precipitation that could be confused with heavy snow from regions of light precipitation with

noisy, unreliable ρH V values. The 0.97 ρH V and 20 dBZ thresholds are consistent with Griffin

et al. (2020) who used ρH V to detect melting layers in radar data. We note that not all clutter

points are removed in our regional maps which can have low values of ρH V and may show up

as stationary features in animations of image muted maps.

The inputs and outputs for image muting from a coastal winter precipitation event on 07

February 2020 are shown in Fig. 3.1. Information from regional maps of the radar reflectivity

field (Fig. 3.1a) and the correlation coefficient field (Fig. 3.1b) are combined. We show an

intermediate stage (Fig. 3.1c) illustrating the pragmatic importance of the using both the

correlation coefficient and reflectivity criteria. ρH V values ≤ 0.97 often occur toward the edges

of the individual radar echo domains where the beam is>∼ 3 km altitude and in winter storms

very likely to be only snow (green region in Fig. 3.1c). We infer that the reflectivity < 20 dBZ is

too low to reliably indicate mixed precipitation that can be mistaken for heavy snow. The areas

in gray represent regions where the ρH V ≤ 0.97 and the reflectivity is ≥ 20 dBZ, where melting

is likely to be present and where we mute the reflectivity. Dark blue colors in Fig. 3.1c are where

the correlation coefficient is > 0.97, indicative of uniform precipitation types. The final image
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muted reflectivity product (Fig. 3.1d) uses a gray scale to deemphasize the subset of reflectivity

values where it is likely to be mixed precipitation. This example shows two linear features in

central New York that could be misinterpreted as snowbands when analyzing the reflectivity

alone (green ovals in 3.1a). The animation of this figure (Video Supplement Animation-Figure-

3.1) for the time period 12:00:00 to 15:00:00 UTC shows how the mixed precipitation region

covers portions of the high reflectivity bands in Fig. 3.1a as the bands move eastward. The

image muted reflectivity helps users focus on regions of the storm that are not affected by

mixed precipitation. We experimented with trying to distinguish the rain-only from the snow-

only regions but found that there was insufficient information in the dual-polarization radar

variables to do this reliably without data on air temperature. Air mass and frontal boundaries

can cause freezing level heights to vary sharply within winter storms unlike warm-season

precipitation.

3.3 Evaluation with independent data

Vertical cross-sections from airborne radar data provide an opportunity to evaluate the

identification of melting regions in ground-based scanning radar data in fine detail. Figure

3.2 shows an image muted regional map corresponding to a science flight during the NASA

Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms

(IMPACTS) 2020 field project (McMurdie et al. 2022). Reflectivity from the nadir-pointing ER-2

X-band Doppler Radar (EXRAD; Heymsfield et al. 1996) along the flight track (green line) in

Fig. 3.2a is shown in Fig. 3.2b. The gray region in the image muted regional map indicates a

quasi-linear region of mixed precipitation extending though eastern New York up to Vermont

and New Hampshire (Fig. 3.2a) between areas of primarily snow (to the northwest in upstate

New York) and primarily rain (to the southeast over southern New England). Eastward of 175 km

along the flight transect in Fig. 3.2b, there is a clear melting layer signature in the NASA EXRAD

data starting near the surface and rising to about 2 km above surface level (ASL) (represented by

the enhanced region of higher reflectivity). The melting layer can also be observed with other

variables from the same transect presented in Fig. 3.3. In particular, the linear depolarization

ratio from the ER-2 cloud radar shows the structure of the melting layer very well (Fig. 3.3d).

Under the melting layer, the values of downward pointing Doppler velocity > -4 m s−1 indicate

the rain layer. The position of the transition between snow and rain in the vertical cross-section

is consistent with the edge of the gray area in Fig. 3.2a. An animated version of this figure

shows the timing as the ER-2 aircraft transects through the image muted portion of the regional

map (Video Supplement Animation-Figure-3.2). As the airplane reaches around 175 km in the

transect, one can see that the height of the NEXRAD radar beam used to create the regional
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Figure 3.1: Image muting processing components for a radar regional map from 07 February 2020 at
13:27:58 UTC. (a) Radar reflectivity (dBZ) field. (b) Correlation coefficient field. (c) Categories indicat-
ing regions that meet the following conditions: correlation coefficient > 0.97 (dark blue), correlation
coefficient ≤ 0.97 and reflectivity < 20 dBZ (green), and correlation coefficient ≤ 0.97 and reflectivity
≥ 20 dBZ (gray). (d) Final image muted product combining color scale for reflectivities in snow and
rain regions with gray scale to mute reflectivities in mixed precipitation regions. Green ovals in (a)
indicate banded features discussed in text. An animated version of this figure is in Video Supplement
Animation-Figure-3.1.
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map (black X in Fig. 3.2b) begins to intersect the melting layer.

Re�ectivity [dBZ]

Figure 3.2: Comparison of image muted regional map with detailed vertical cross-section from NASA
ER-2 X-band Doppler radar during a NASA IMPACTS science mission on 07 February 2020. At 16:09:10
UTC, the aircraft is located at the transition between snow and melting precipitation in the radar regional
map. (a) Image muted reflectivity valid at 16:11:03 UTC with the ER-2 flight leg (green line), aircraft
location corresponding to time shown in bottom panel is at the arrow head along the leg. Locations
of ASOS observations in Fig. 3.4 are annotated with stars and black labels. (b) Vertical cross-section of
reflectivity from NASA EXRAD radar with current aircraft location near the top of the vertical green line.
Time at right corresponds to aircraft position. The black X indicates the height of the point in panel
a that varies along the 0.5° elevation angle scans used to construct the regional maps. An animated
version of this figure is in Video Supplement Animation-Figure-3.2.

Information to further evaluate the timing and location of the melting and mixed precipita-

tion is available from time series of precipitation from surface sensors. Figure 3.4 shows hourly

time series of precipitation types at several NWS Automated Surface Observing Systems (ASOS)

weather stations (letters in Fig. 3.2a). The surface observations and timing of precipitation

transitions align well with the evolution and movement of the storm (Fig. 3.2 and 3.3). For
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Figure 3.3: Vertical cross-sections of (a) reflectivity and (b) vertical velocity from NASA ER-2 EXRAD
radar and (c) reflectivity and (d) linear depolarization ratio (LDR) from NASA ER-2 CRS radar coincident
with vertical cross section in 3.2. Green line indicates current aircraft location and black X indicates the
height of the point in 3.2a that varies along the 0.5° elevation angle scans used to construct the regional
maps.
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the hour of 16:00:00 UTC, Syracuse Hancock International Airport (KSYR) is reporting snow,

Albany International Airport (KALB) is reporting rain, Greater Binghamton, NY (KBGM) is

reporting snow, and Westchester County Airport (KHPN) is reporting rain. The ASOS time

series for KBGM also indicates the hour when rain transitioned to mixed (11:00:00 UTC) and

mixed transitioned to snow (15:00:00 UTC) (Fig. 3.4c). These surface data are consistent with

the locations of the muted precipitation (Video Supplement Animation-Figure-3.2).

3.4 Application to RHIs

Information on the 3D geometry of melting regions can be obtained by applying the image

muting technique to range-height indicator (RHI) scans constructed from a full volume scan

from ground-based scanning radars. These examples illustrate the often complex layering

within coastal winter storms where portions of the warmer air masses (> 0° C) slide over

colder air masses (< 0° C). Figure 3.5 is from the KOKX radar during a winter storm on 08

February 2013. The green line in the PPIs corresponds to the azimuth used to create the RHIs

(Fig. 3.5a,b). Rather than a simple flat or tilted melting layer, this storm had a 3D "arc-like"

mixed precipitation structure (Fig. 3.5c,d). The temperature field along the RHI from the ERA5

reanalysis data shows the associated vertical temperature structure and the 0°C isotherm (Fig.

3.5e; Hersbach et al. 2020). Below 2 km ASL, the temperature is mostly above freezing, which

corresponds well to the top of the melting in the RHI panels (Fig. 3.5c,d,e). There appears to be

an intrusion of colder air around 0.5 km ASL (0–30 km horizontal) that is likely contributing

to the arc-like feature seen in the RHI panels (Fig. 3.5c,d,e). Animations of panels a through

d of Fig. 3.5 show the complex horizontal pattern as the features evolve and move (Video

Supplement Animation-Figure-3.5). The structure of the melting layer in this example is also

discussed in Griffin et al. (2014).

An example from the Philadelphia, PA (KDIX) radar during a winter storm on 01 December

2019 is presented in Fig. 3.6. This storm exhibited an interesting "collapsing" signature in the

correlation coefficient and image muted reflectivity PPI fields in northern New Jersey (Fig.

3.6a,b). The RHI panels intersect the feature and show a sharp drop in melting layer altitude

around the 80 km range from the radar (Fig. 3.6c,d). The temperature field from the ERA5

reanalysis shows an elongated layer of above freezing temperatures around 2 km ASL and

another area of above freezing temperatures below 1 km ASL between 0 and 50 km away from

the radar (Fig. 3.6e). It is likely that the ERA5 data are too coarse to fully represent the complex

temperature structure as suggested by the radar RHIs. Animations of panels a through d of Fig.

3.6 show the initiation of this feature and how it evolves (Video Supplement Animation-Figure-

3.6).
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Figure 3.4: Hourly ASOS precipitation rate and type [mm h−1] reports for 07 February 2020 from (a)
KSYR, (b) KALB, (c) KBGM and (d) KHPN. Colors indicate precipitation type as in legend in panel d.
Red dashed line indicates 16:09:11 UTC, highlighted in Fig. 3.2. The y-axis range is larger in panel c
compared to other panels.

3.5 Summary

The proliferation of weather radar web interfaces and mobile apps has made operational

radar data easily accessible to a wide range of users with varying levels of radar data inter-

pretation expertise. People who are well versed in the subtle nuances of interpreting weather

radar data represent only a subset of research meteorologists and an even smaller subset of the

broader set of radar data users which includes emergency managers, TV weathercasters, and

airport operators.

Users of weather radar data associate areas of higher reflectivities with heavier precipitation.

In winter storms, linear features of localized enhanced reflectivity are associated with heavy

snow bands and contribute to snow accumulation forecast uncertainties (e.g. Novak et al. 2008;

Ganetis et al. 2018). But regions of mixed precipitation can exhibit higher reflectivities often

without the higher precipitation rates or equivalent liquid water content. For winter storm

analysis, it is important to distinguish between locally enhanced reflectivity associated with

increases in ice mass and reflectivity from melting. Fortunately, mixed precipitation often has

a low correlation coefficient (< 0.97) which in combination with reflectivities ≥ 20 dBZ can be

used to distinguish higher reflectivity regions that are and are not heavy snow (Giangrande
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Figure 3.5: Comparison of image muted regional map with reconstructed RHIs and reanalysis tem-
perature vertical cross-section from KOKX radar on 08 February 2013. (a) Correlation coefficient and
(b) image muted reflectivity (dBZ) 0.5° elevation angle PPI plots for KOKX radar valid 08 February 2013
21:00:13 UTC. Green line in (a) and (b) indicates location of reconstructed RHI cross-sections from (c)
correlation coefficient and (d) image muted reflectivity. (e) ERA5 reanalysis temperature cross-section
interpolated to the plane of the RHI. Black line in panel e indicates 0°C isotherm. An animated version
of this figure is in Video Supplement Animation-Figure-3.5.
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ERA5 Temperature Cross-Section at 01 Dec 2019 18:00 UTC
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Figure 3.6: Comparison of image muted regional map with reconstructed RHIs and reanalysis temper-
ature vertical cross-section from KDIX radar on 01 December 2019. (a) Correlation coefficient and (b)
image muted reflectivity (dBZ) 0.5° elevation angle PPI plots for KDIX radar valid 01 December 2019
17:37:49 UTC. Green line in (a) and (b) indicates location of reconstructed RHI cross-sections from (c)
correlation coefficient and (d) image muted reflectivity. (e) ERA5 reanalysis temperature cross-section
interpolated to the plane of the RHI. Black line in panel e indicates 0°C isotherm. An animated version
of this figure is in Video Supplement Animation-Figure-3.6.
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et al. 2008).

Typically, radar reflectivity and hydrometeor identification are presented as separate prod-

ucts (Rauber and Nesbitt 2018; Bringi and Chandrasekar 2001; NOAA 2017). When these prod-

ucts are separate, a user examining an evolving winter storm needs to simultaneously examine

synced sequences of maps and mentally keep track of the moving positions of higher reflectivity

features relative to the hydrometeor type signatures.

We developed image muting, which reduces the visual prominence of the reflectivities

within the mixed precipitation features in winter storms that can be mis-identified as heavy

snow. Reflectivities corresponding to the mixed precipitation features are deemphasized using

a gray scale and the regions with just snow and just rain are depicted in a corresponding full-

color scale. We tuned the thresholds used for identification of mixed precipitation areas using a

combination of detailed vertical cross-sections from research aircraft radar, reconstructed RHIs

from ground-based scanning radars, and surface weather stations observed precipitation types.

Users could apply this visualization technique using operational hydrometeor classification as

an input and mute other specific regions depending on the application.

Image muted maps and movie loops will help reduce the error associated with misinter-

preting radar reflectivity products during winter storms. Users examining an image muted

map movie loop can easily distinguish the locations of heavy snow and mixed precipitation as

compared to having to consult separate map movie loops. Monitoring where transitions from

rain to mixed precipitation and mixed precipitation to snow are present and where they are

likely to move to can aid in assessing expected impacts of winter weather.

The image muting visualization technique can be applied to a wide variety of applications.

Any data display that suffers from potential misinterpretation could benefit from image muting

portions of the data to de-emphasize subregions in the plot.

Video Supplement All animations can be viewed at: https://av.tib.eu/series/1228.

Individual animations can be viewed by following the DOI URL.

Animation-Figure-3.1: Animated plot of image muting processing components for a radar

regional map from 12:00:00 to 15:00:00 UTC on 07 February 2020. (a) Radar reflectivity (dBZ)

field. (b) Correlation coefficient field. (c) Categories indicating regions that meet the following

conditions: correlation coefficient > 0.97 (dark blue), correlation coefficient ≤ 0.97 and reflec-

tivity < 20 dBZ (green), and correlation coefficient ≤ 0.97 and reflectivity ≥ 20 dBZ (gray). (d)

Final image muted product combining color scale for reflectivities in snow and rain regions

with gray scale to mute reflectivities in mixed precipitation regions. (goes with Fig. 3.1). Title:

07 February 2020 image muting example DOI: https://doi.org/10.5446/57311
Animation-Figure-3.2: Animated plot of image muted regional map with detailed vertical
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cross-section from NASA ER-2 X-band Doppler radar during a NASA IMPACTS science mission

on 07 February 2020. At 16:09:10 UTC, the aircraft is located at the transition between snow

and melting precipitation in the radar regional map. (a) Image muted reflectivity valid at

16:11:03 UTC with the ER-2 flight leg (green line), aircraft location corresponding to time

shown in bottom panel is at the arrow head along the leg. Locations of ASOS observations

in Fig. 3.4 are annotated with stars and black labels. (b) Vertical cross-section of reflectivity

from NASA EXRAD radar with current aircraft location near the top of the vertical green line.

Time at right corresponds to aircraft position. The black X indicates the height of the point in

panel a that varies along the 0.5° elevation angle scans used to construct the regional maps.

(goes with Fig. 3.2). Title: 07 February 2020 NASA IMPACTS transect comparison DOI: https:
//doi.org/10.5446/57312

Animation-Figure-3.5: Animated plot of image muted regional map with reconstructed

RHIs and reanalysis temperature vertical cross-section from KOKX radar on 08 February 2013.

(a) Correlation coefficient and (b) image muted reflectivity (dBZ) 0.5° elevation angle PPI plots

for KOKX radar valid valid 21:00:00 UTC 08 February to 00:00:00 UTC 09 February 2013. Green

line in (a) and (b) indicates location of reconstructed RHI cross-sections from (c) correlation

coefficient and (d) image muted reflectivity. (e) ERA5 reanalysis temperature cross-section

interpolated to the plane of the RHI. Black line in panel e indicates 0°C isotherm. (goes with Fig.

3.5). Title: 08 February 2013 KOKX RHI comparison DOI: https://doi.org/10.5446/57313
Animation-Figure-3.6: Animated plot of image muted regional map with reconstructed

RHIs and reanalysis temperature vertical cross-section from KDIX radar on 01 December 2019.

(a) Correlation coefficient and (b) image muted reflectivity (dBZ) 0.5° elevation angle PPI plots

for KDIX radar valid 15:00:00 to 20:00:00 UTC on 01 December 2019. Green line in (a) and (b)

indicates location of reconstructed RHI cross-sections from (c) correlation coefficient and (d)

image muted reflectivity. (e) ERA5 reanalysis temperature cross-section interpolated to the

plane of the RHI. Black line in panel e indicates 0°C isotherm. (goes with Fig. 3.6). Title: 01

December 2019 KDIX RHI comparison DOI: https://doi.org/10.5446/57314
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Abstract Radar observations of winter storms often exhibit locally-enhanced linear features

in reflectivity, sometimes labeled as snow bands. We have developed a new, objective method

for detecting locally-enhanced echo features in radar data from winter storms. In comparison
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to convective cells in warm season precipitation, these features are usually less distinct from

the background echo and often have more fuzzy or feathered edges. This technique identifies

both prominent, strong features and more subtle, faint features. A key difference from previous

radar reflectivity feature detection algorithms is the combined use of two adaptive differential

thresholds, one that decreases with increasing background values and one that increases

with increasing background values. The algorithm detects features within a snow rate field

that is rescaled from reflectivity and incorporates an under and over estimate to account for

uncertainties in the detection. We demonstrate the technique on several examples from the

US National Weather Service operational radar network. The feature detection algorithm is

highly customizable and can be tuned for a variety of datasets and applications.

4.1 Introduction

Linear features of enhanced reflectivity, labeled as snow bands, are often observed in

winter storms and are an active topic of research (Baxter and Schumacher 2017; Ganetis et al.

2018; Lackmann and Thompson 2019; Kenyon et al. 2020; Picca et al. 2014; Novak et al. 2004;

McMurdie et al. 2022; Colle et al. 2023). Snow bands that are≥ 250 km in length are described as

primary or single bands and sets of roughly parallel smaller bands each less than 250 km long

are described as multi-bands (Ganetis et al. 2018). Primary bands are typically associated with

frontogenesis (Novak et al. 2004), but the forcing mechanism for multi-bands is still unclear

(Ganetis et al. 2018). Unlike convective cells in rain which usually have a sharp reflectivity

gradient between the cell itself and the background reflectivity, snow bands stand out less

from the background and the edges of snow bands can gradually feather out. Hence, objective

methods to identify convective and stratiform precipitation in radar data of deep convection

do not work well for winter storms.

Much of the previous work to detect snow bands in radar reflectivity data focused on identi-

fication of primary bands and either ignored multi-bands or only addressed the stronger subset

of multi-bands. Novak et al. (2004) and Baxter and Schumacher (2017) used dBZ thresholds

(30 and 25 dBZ, respectively) to identify primary band objects in National Weather Service

(NWS) Next Generation Radar (NEXRAD) Level-III reflectivity regional maps. Kenyon et al.

(2020) identified primary snow bands for five winter seasons using Level-III reflectivity data.

Kenyon et al. (2020) used a 20 dBZ threshold, with the caveat that there must be an embedded

region > 25 dBZ along at least half the axis that is at least 10 dB greater than the background

reflectivity. Level-III reflectivity data has a precision of 5-dB and will inherently not be able to

identify features that are < 5 dB different from the background. In general, methods that use

fixed thresholds are sensitive to the radar calibration as well as to the grid spacing of the input
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data since reflectivity values are not scale invariant (Rinehart 2004).

Several authors have used methods that adapt to changing background reflectivity values in

the wider storm and hence better detect localized enhancements than fixed threshold methods.

Ganetis et al. (2018) identified both primary and multi-band features by identifying echo

regions in NEXRAD Level-II regional reflectivity maps that were greater than the upper-sextile

of reflectivity values for a given precipitation region. Ganetis et al. (2018) classified primary

bands as objects that were ≥ 200 km and had an aspect ratio (width/length) of ≤ 0.5 and multi-

bands as objects that were < 200 km and had as aspect ratio ≤ 0.5. Objects that had an aspect

ratio > 0.5 and a length ≥ 10 and ≤ 100 km were labelled as cells. Radford et al. (2019) used

NEXRAD base reflectivity mosaics for three winter seasons and only considered objects that

were 1.25 standard deviations above the mean reflectivity, as well as ≥ 250 km in length and

with a minimum aspect ratio of 0.33 following the methods of Baxter and Schumacher (2017).

The Method for Object-Based Diagnostic Evaluation (MODE), included in the Model Eval-

uation Tools (MET) verification software package, is a popular tool for detecting objects in

meteorological datasets (Bullock et al. 2016). Originally developed to compare forecast fields to

observed fields, MODE applies a convolution to a field and then uses user-defined thresholds

to find objects in the original field. For example, the user can change the size of the convolution

radius used to smooth the input field and the single threshold that determines whether an

object is defined relative to the smoothed background.

For some applications, detecting only the stronger subset of objects is sufficient. For our

research, which aims to understand the environments in which snow bands form and the

physical processes that create them, a fuller picture of their life cycle is needed. Visual inspection

of sequences of radar data demonstrates that advecting snow bands often undergo transitions

from faint to strong to faint before dissipating. In order to study these structures, we needed a

automated snow band detection method that would detect a range of echo features from faint

to strong.

Our method, described in detail in Section 4.2, rescales the reflectivity field to an estimated

snow rate to better discern weak echo features and combines two differential adaptive thresh-

olds to determine if a feature stands out from the background. We use the generic term locally

enhanced feature to describe objects that one would pick out by eye as distinct from lower

background values. We define two varieties of locally enhanced features, those that are have

smaller differences from the background, faint features, and those that have larger differences,

strong features. The algorithm we developed for detecting locally-enhanced features in winter

storms is described in Section 4.2, examples of our technique are shown in Section 4.3, and a

summary is provided in Section 4.4. We contributed the software to the open-source python

package, Py-ART (Helmus and Collis 2016) where it is available for general use.Within this
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paper, we will be using the terms object which is commonly used in the image processing

literature, and feature which refers here to the meteorological application interchangeably. We

also define winter season storms of interest as those that contain a substantial area of surface

snow fall.

4.2 Methods

4.2.1 Data

To demonstrate our method, we use NEXRAD Level-II radar reflectivity regional reflectivity

maps composed from several radars in the Northeast US (Tomkins et al. 2022, 2023a,b). The

regional maps use 2D Cartesian Cressman interpolation to a 2 km grid based on the 0.5° eleva-

tion angle from several different radars. Where there is overlap between adjacent radars, we use

the point with the highest reflectivity value. Given the coarse vertical spatial resolution of NWS

operational radar volume coverage patterns, 3D Cartesian interpolation often smooths and

obscures the fine-scale horizontal features we need to discern faint objects. For our application,

the varying altitudes along the 0.5° elevation angle scans that constitute the regional maps are

preferable to a constant altitude map that smooths key features we need for our analysis. While

we demonstrate our technique with a specific set of NEXRAD radars in the northeast US, the

technique can be applied to any gridded radar data.

4.2.2 Feature detection algorithm

The feature detection method described in this paper to identify locally enhanced reflectiv-

ity features in cool-season precipitation systems is built upon the implementation of adaptive

thresholds for objective convective-stratiform precipitation classification developed for warm-

season storms in a series of papers by Churchill and Houze (1984), Steiner et al. (1995), Yuter

and Houze (1997), and Yuter et al. (2005). The underlying idea, identifying the cores of features

that exceed the background value by an amount that varies with the background value, is

well established (Steiner et al. 1995). These types of algorithms are highly customizable and

can be tuned to a wide variety of datasets. So as to be more general purpose, the software we

contributed to the open-source python package, Py-ART, can be configured to run either as a

variant of established convective-stratiform precipitation algorithm for warm-season storms

or for the application described in this paper for winter storms.

A data flow diagram of the winter storm algorithm using the Yourdon symbol conventions

(Woodman 1988) shows the key steps in the data processing (Fig. 4.1). The top-level data flow
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(Fig. 4.1a) is shown with two levels of nested data processing (Fig. 4.1b and c). The steps in

Fig. 4.1c follow the data flow steps from Steiner et al. (1995) algorithm to identify convective

and stratiform precipitation from reflectivity in rain layers. Input parameter names and recom-

mended settings for detecting locally enhanced reflectivity features in snow are provided in

Table 4.1.
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Figure 4.1: Data flow diagram of the winter storm feature detection algorithm. Dark blue ovals indicate
processes, purple polygons indicate input and output data, and orange elements indicate adjustable
setting parameters used in the functions. Each arrow represents an input or output to the associated
functions. The reflectivity field and background average field are 2D arrays. The strong and faint snow
features are represented by distinct values in a 2D array. a) Top level data flows. b) The detailed steps
within "Step 3: Detect snow features" (blue) box in panel a). c) shows the detailed steps within the "Find
features" (green) boxes in panel b).

The feature detection algorithm outputs 2D arrays that in effect simplify the input reflectivity

field into faint feature, strong feature, and background categories. Additional image processing
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Table 4.1: Parameters used to detect locally enhanced echo features in winter storms. All input param-
eters to the algorithm as run for this paper are provided including those that are in effect turned off.

Parameter Value

Always core threshold 5 mm hr−1

Min. core size 10 km2

Smoothing parameters
Background radius 40 km
Min. fraction for footprint 0.75

Cosine scheme parameters
Max. difference (i.e. a in Eqn. 4.1) 1.5 mm hr−1

Zero difference cosine value (i.e. b in Eqn. 4.1) 5 mm hr−1

Scalar scheme parameters Scalar difference (i.e. c in Eqn. 4.2) 1.5
Core radii parameters
(turned off)

Max. core radius 2 km
Value for max. core radius 10 mm hr−1

Background echo classification parameters
(turned off)

Min. value used 0 mm hr−1

Weak echo threshold 0 mm hr−1

of this output based on the shape characteristics of individual features such as aspect ratio,

length, width, and area can be used to further classify the features into different types of banded

and cellular features (e.g. Ganetis et al. 2018; Yeh 2024).

Estimation of snow rate

A key difference from previous methods described in Section 4.1, is the use of an estimated

snow rate field as the input for the feature detection instead of a radar reflectivity field. In snow,

radar reflectivity dBZ is roughly proportional to l o g10(mass3), where mass is the mass per unit

volume of precipitation-sized ice. Any one relationship between reflectivity and snow rate

has high uncertainty as observational studies have shown that for given dBZ, the associated

snow rate can vary by two orders of magnitude (Fujiyoshi et al. 1990). This first step in the data

processing rescales reflectivity to a value that is more linear in liquid equivalent snow rate.

We do not use the derived snow rates for quantitative estimates of precipitation, just as an

alternative scaling factor to reflectivity in dB.

Empirical Z-S relations encompass ones for dry snow, which have smaller changes of

equivalent liquid per ∆Z to ones for wet snow which have larger changes per ∆Z (Fig. 4.2

Rasmussen et al. 2003). In order to obtain higher contrast between locally enhanced Z in terms

of snow rates, we use the wet snow Z-S relationship from Rasmussen et al. (2003); Ze = 57.3S 1.67

where Ze is equivalent radar reflectivity with units of mm6 m−3 and S is snow rate with units of

mm hr−1. Our results are not sensitive to the absolute values of snow rate, only to the relative

anomaly from the background average. Examples of re-scaling the reflectivity field to a snow

rate field are shown in Fig. 4.3.
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Figure 4.2: Reflectivity to snow rate (Z-S) relationships with log-scale x-axis. The bold blue line indicates
the relationship from Rasmussen et al. (2003) for wet snow used in this study. The bold red line shows
the relationship for dry snow from Rasmussen et al. (2003) and the purple line shows the relationship
from Saltikoff et al. (2010).
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Calculation of smoothed background field

A locally smoothed background average snow rate field is computed from the snow rate field

(Fig. 4.3). The background radius smoothing parameter is used to define a circular footprint

surrounding each pixel (Fig. 4.1a). We found that use of circular footprints produced fewer

artifacts than rectangular footprints. The surrounding points are then averaged to find the

background value for that point. Feature detection is sensitive to the size of the area used to

calculate the background value (not shown). We found a background radius of 40 km was the

most suitable for detecting snow band features in the NWS NEXRAD data. A larger background

radius will yield a smoother background average field used to compare to the input field to find

features. A smaller background radius is likely more suitable for warm-season precipitation

systems which usually have stronger reflectivity gradients than cool-season precipitation

systems. An example of the locally-smoothed background average snow rate field is shown in

Fig. 4.3.
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Figure 4.3: Close-up examples of (a)-(c) Reflectivity [dBZ] rescaled to (d)-(f) snow rate [mm hr−1] and
smoothing of the snow rate fields to a (g)-(i) background average using a 40 km radius footprint. (a), (d),
(g) from 7 February 2021 14:37:28 UTC, (b), (e), (h) from 17 December 2020 16:26:01 UTC, and (c), (f), (i)
from 17 December 2019 16:23:59 UTC.
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When calculating the background average, a minimum fraction of valid points within the

footprint can be set so only pixels with a sufficient amount of surrounding echo are used in

the analysis. We use a minimum fraction of 0.75 (i.e. the footprint must contain at least 75%

echo coverage to be used in the analysis). This is done to minimize artifacts on the edge of the

echo. The effects of the 0.75 minimum fraction can be seen in the background average field in

Fig. 4.3 where there are discrepancies between the echo edges in the snow rate field (panels

d-f) and the echo edges in the background field (panels g-i). Changing this value only acts to

change how much echo must be present in the footprint to be considered in the algorithm.

Smaller values will mean that less features will be detected along the edge of the echo, while

larger values closer to 1 will include all regions of the echo.

Two adaptive differential thresholds for finding feature cores

The background average field and the original snow rate field are compared using two

"difference threshold schemes". Pixels where the difference between the snow rate field and

the background average field are greater than or equal to the adaptive difference threshold

constitute a feature’s "core".

There are two individual pixel versus background difference relationships built into the

algorithm, a "cosine scheme" and a "scalar multiplier scheme" that are used on combination.

A pixel is identified as feature core if the value of the pixel exceeds the background by either

adaptive threshold. If the pixel is only identified as a core with the scalar multiplier scheme, it

is labeled as a faint feature. If it is identified as a core with the cosine scheme it is labeled as a

strong feature. The cosine relationship has a decreasing threshold with increasing background

value (Fig. 4.4a). One of the original methods created by Steiner et al. (1995) defined a curve

relationship between the background reflectivity and reflectivity difference based on manual

iterative adjustments. Yuter and Houze (1997) used a cosine function as it was a simple way to

define a curve with more intuitive parameters. The cosine scheme is meant to identify objects

that are generally more distinct from the background. We developed the scalar multiplier

scheme to have an increasing threshold with increasing background value which acts to identify

objects that are not very distinct from the background value (Fig. 4.4b). After extensive testing

on many idealized and real examples from winter storms, we found that a combination of

both types of adaptive thresholds was needed in order to detect the full range of reflectivity

features from faint to strong. The cosine scheme only identifies objects that are very distinct

from the background, while the scalar multiplier scheme identifies objects that are both very

distinct and not very distinct. We chose the particular equations described here as they were

both intuitive and easy to tune.

The cosine scheme’s decreasing difference threshold with increasing background value is
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a b c

Figure 4.4: Adaptive difference relationships used to determine the threshold between a pixel and its
background value to designate the pixel as a feature core. (a) cosine scheme and (b) scalar multiplier
scheme. Panel (c) shows the difference relationships in (a) and (b) and is shaded based on the where
each feature type is found. Note y-axis range in (b) extends further than in (a) and (c). Input parameters
used for tuning are annotated with gray dashed lines, see text for full details.

described in Equation 4.1 where S represents the snow rate at a pixel, Sa v e r a g e represents the

background average snow rate, a represents a maximum possible difference value correspond-

ing when the background average value is 0 mm hr−1 and b represents the background average

value where the corresponding difference threshold is zero.

S−Sa v e r a g e ≥ a cos(
πSa v e r a g e

2b
) (4.1)

Other similar equations with a decreasing threshold with increasing background value

would also likely be suitable. The cosine scheme (Fig. 4.4a) is adapted from methods used to

identify convective and stratiform precipitation structures in rain (e.g. Steiner et al. 1995; Yuter

and Houze 1997; Yuter et al. 2005; Powell et al. 2016). The choice of this specific equation is

purposeful as it permits the same Python code to be used with an input field of radar reflectivity

from a rain layer and appropriate parameter settings to exactly reproduce the data processing

of the original C++ code used in Yuter et al. (2005).

Figure 4.4a shows how changing the maximum difference (a in Eqn. 4.1; horizontal dashed

line) and zero difference cosine value (b in Eqn. 4.1; vertical dashed line where the function

would cross the x-axis) changes the overall shape of the difference function and thus the thresh-

olds used to identify pixels that are cores. Having a lower maximum difference or zero difference

cosine value will increase the number of cores since it relaxes the difference threshold needed

for a point to be considered a core. The final tuning parameter in the difference relationship is

the "always core threshold" which is the value above which all background points are consid-

ered cores (vertical dashed line in Fig. 4.4). Having an absolute threshold like the "always core

threshold" is necessary for identifying large cores that would not be picked up distinguished
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from the background field. In our method, the value corresponding to a pixel that is always part

of a snow band is set at an equivalent liquid precipitation rate of 5 mm hr−1 (which corresponds

to a reflectivity value of 30 dBZ). For reflectivity fields in rain, usually this value is set at or

above 40 dBZ (rain rate of about 13 mm hr−1).

The scalar multiplier scheme uses a linear function with a difference threshold that increases

with increasing background value up to the "always core threshold" (Fig. 4.4b). The equation

for the scalar multiplier scheme is described by Eqn. 4.2 where S represents the snow rate at a

pixel, Sa v e r a g e represents the background average snow rate, c represents the scalar difference.

S−Sa v e r a g e ≥ (c ∗Sa v e r a g e )−Sa v e r a g e (4.2)

The scalar difference value (c in Eqn. 4.2) changes the slope of the difference threshold in

Fig. 4.4b). A larger scalar difference value will yield a steeper slope and a greater difference

threshold needed for a given background average value.

Figure 4.4c shows both difference equations and is colored coded by classification (strong

feature, faint feature, background) based on the two different schemes.

A detection threshold that increases with increasing background value helps to distinguish

both the feathered edges of stronger features as well as features that differ only slightly from the

background. Figure 4.5 shows three examples of the output from both the cosine scheme and

the scalar scheme. Both the cosine scheme and the scalar scheme pick up the strong features

from the snow rate (e.g. band of 10+mm hr−1 in Fig. 4.5b), but only the scalar scheme can

identify the weaker features including the fuzzy, feathered edges.

Converting cores to contiguous features

To address isolated pixels within detected features, we perform a binary closing on the

2D array of cores to mitigate these artifacts (Fig. 4.6a). A binary closing is an image dilation

followed by an image erosion which acts to fill in the holes within a feature but keeps the

feature at roughly the original size (Jamil et al. 2008). We use a quasi-circular 5x5 kernel (Fig.

4.6b) for the binary closing to yield a more physically realistic output as opposed to use of a

square kernel.

After we perform the binary closing step, we then remove objects that are less than 120 km2

in area. We found that this value was suitable for our applications. No object capable of meeting

the band criteria of Ganetis et al. (2018) is less than 120 km2 in area. An example of the binary

closing and small object removal on the cosine scheme cores from the examples presented in

Fig. 4.5 is shown in Fig. 4.7 to yield the filtered, spatially contiguous features of interest.

There were two steps from the established convective-stratiform algorithm that we turned

52



a b c

d e f

g h i

Sn
ow

 r
at

e 
[m

m
 h

r-1
]

Co
re

s 
fr

om
Co

si
ne

 s
ch

em
e

Co
re

s 
fr

om
Sc

al
ar

 s
ch

em
e

Figure 4.5: Close-up examples of (a)-(c) snow rate [mm hr−1], (d)-(f) feature cores detected with the
cosine scheme, and (g)-(i) feature cores detected with the scalar scheme. Same example dates and times
as in Fig. 4.3.

Figure 4.6: (a) Example of binary closing operation (image morphology dilation then erosion) from
https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html and (b)
kernel used in binary closing operations.
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Figure 4.7: Close-up examples of feature cores from cosine scheme before (a)-(c) and after (d)-(f)
binary closing and removal of small objects. The bottom row represents the filtered cores. Same example
dates and times as in Fig. 4.3.

off for our feature detection application to winter storms. An additional step can be applied to

delineate a weaker echo subset of the background echo. We do not use this for our application

and set both the weak echo and minimum value to 0 mm hr−1 (Table 4.1). Alternate values of

these settings can be useful for tabulating statistics of different magnitudes of background

radar echo.

For the radar data set we were using, we found that the additional step of use a radius of

influence around each core pixel as part of the feature was not needed. To turn this off, we set

the maximum core radius to 2 km, the same as the input grid pixel size (Table 4.1). For some

applications, the radius of influence step may be needed, especially for finer grids.

Snow storm faint and strong feature identification method

Objects that are identified by the cosine scheme we define as "strong" objects, while objects

that are only identified by the scalar multiplier and not by the cosine scheme are defined as

"faint" objects (Fig. 4.8). The separation into strong and faint objects allows for analysis that

addresses the relative intensity of the observed reflectivity compared to independent data

sets such as surface weather station snow rates. The output of the algorithm can yield strong

and faint portions of the same contiguous feature as well as objects that are solely of one type

(Figure 4.8ghi).

An important component of running the algorithm in practice is to account for uncertain-

ties in the observed data and that no one method for feature detection will work perfectly in all
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Figure 4.8: Close-up examples of (a)-(c) filtered features from cosine scheme, (d)-(f) filtered features
from scalar scheme, and (g)-(i) feature detection output wherein portions of objects labeled as strong
were detected in the cosine scheme and those labeled faint are only detected in the scalar scheme. Same
example dates and times as Fig. 4.3.
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situations. Similar to Yuter et al. (2005), we bound our feature identification by running the

algorithm on the estimated snow rate field and two offsets of that field with slightly higher and

lower values to yield purposeful over and under estimates of the feature detection. Increasing

the radar reflectivity by 2 dB, converting to snow rate, and then running the algorithm yields an

overestimate in feature area, while decreasing by 2 dB yields an underestimate. For the under-

estimate, echo where the original reflectivity field ≤ 2 dB gets removed, so the underestimate

feature detection field will have less total echo area than the best and overestimate feature

detection fields. Bounding the best estimate feature detection field can be accomplished by

varying the input field slightly as we have done here, or by varying the difference equation. Both

accomplish the same goal of making minor adjustments to yield an under and over estimate

in the field. We recommend adjusting the field by at least ± 2 dB as this value is close to the

minimum uncertainty in the US NWS operational radar reflectivity calibrations. As compared

to the "best estimate", the underestimate version usually reduces the size of strong features

and amplifies the detection of faint features compared to the best estimate. The overestimate

version the snow field usually yields larger feature sizes for the strong features and damps the

detection of the faint features compared to the best estimate.

4.3 Examples

We illustrate our algorithm on regional composites of Level-II data from National Weather

Service (NWS) Next-Generation Radar (NEXRAD) network radars that were obtained from the

NOAA Archive on Amazon Web Services (Ansari et al. 2018). Full details on how the composites

are created can be found in Section 2.1 of Tomkins et al. (2022).

After we run the algorithm to detect features, we apply image muting (Tomkins et al. 2022) to

identify regions of mixed precipitation in the winter storms. This step de-emphasizes portions

of the echo that pass through the 0°C level. The sharp temperature gradients in winter storms

can yield mixed precipitation echo regions that resemble bands (e.g. Picca et al. (2014) their Fig.

2 and Colle et al. (2023) their Fig. 7) and it is important to remove these mixed phase echoes

before interpreting the detected features as snow.

Our examples span a range of cases and snow band intensities including storms with and

without primary bands and multi-bands. The example from 7 February 2021 (left panel in

Fig. 4.3, 4.5, 4.7, and 4.8) shows several strong bands over Maryland and Virginia and a few

faint objects as well. The one from 17 December 2020 (middle panel in Fig. 4.3, 4.5, 4.7, and

4.8) includes a strong primary band over northern Pennsylvania and southern New York and

several faint bands over southern Pennsylvania. The data from 17 December 2019 (right panel

in Fig. 4.3, 4.5, 4.7, and 4.8) contains mostly faint bands over New Hampshire and Maine. All the
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cases shown also include portions of echo that contain mixed precipitation which commonly

occurs in east coast US winter storms. In each of the example regional cases, video supplements

illustrate the time continuity of the detection method as features evolve and move through the

domain.

4.3.1 Application in snow layers to identify faint and strong reflectivity

features

The spatial and temporal coherence of the bands is illustrated in the sequences of images

± 1 hour for each of Fig. 4.9, 4.10, 4.11, 4.12 in the Video Supplement. Individual bands form

and dissipate as the storm moves and evolves. A key goal of the algorithm development was to

minimize flashing on and off of individual features in consecutive times.

The winter storm from 7 February 2021 at 14:37 UTC exhibited a primary band extending

from northern Virginia to Connecticut and faint multi-bands across Pennsylvania and New

York (Fig. 4.9). The underestimate field (Fig. 4.9c) also has a strong primary band similar to

the best estimate although smaller and narrower. The few, small strong features in the best

estimate are detected as faint features in the underestimate (Fig. 4.9c). The overestimate field

(Fig. 4.9d) has a wider strong band compared to the best estimate and has more strong objects

in general compared to the best estimate. The strong, primary band traverses along the east

coast while the faint multi-bands dissipate and form in the weaker region in Pennsylvania and

New York. (Video Supplement Animation-Figure-4.9).

The winter storm from 17 December 2020 over the Northeast US (Fig. 4.10) contained

primary and multi-bands. There are several large bands that extend over New York and Mas-

sachusetts that are associated with high values in the snow rate field and are identified as

strong features (Fig. 4.10). Over southern Pennsylvania there are other features that do not

stand out as much that are identified as faint features (Fig. 4.10). As the storm evolves, the large

band remains roughly in the same location but changes shape while the other, smaller features

undergo more dramatic changes (e.g. dissipate, break apart, strengthen) (Video Supplement

Animation-Figure-4.10). The faint bands over Pennsylvania also evolve in time and space,

some transitioning to strong bands and some weakening and dissipating (Video Supplement

Animation-Figure-4.10). Similar to the previous example, the under estimate has a narrower

primary band and has a lot more "faint" features compared to the best and over estimates. The

over estimate shows very few faint features and mostly amplifies the main strong features (Fig.

4.10d).

The winter storm on 17 December 2019 was generally weaker and had a lot of faint bands

compared to the example from 17 December 2020 (Fig. 4.11). Areas of the southern part of the
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Figure 4.9: Demonstration of bounding the best estimate feature detection with purposeful overes-
timates and underestimates using an example from 7 February 2021 14:37:28 UTC which features a
primary snow band and a few multi-bands. Locally enhanced features that include mixed precipitation
are image muted in gray (Tomkins et al. 2022). (a) Re-scaled snow rate field (mm hr−1 units), Feature de-
tection (b) best estimate, (c) underestimate, (d) overestimate. Feature detection fields show background
regions in teal, strong features in yellow, and faint features in orange. An animated version of this figure
is available in the Video Supplement Animation-Figure-4.9.
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Figure 4.10: Demonstration of bounding the best estimate feature detection with purposeful overes-
timates and underestimates using an example from 17 December 2020 06:26:01 UTC which features
several strong primary bands and a few faint multi-bands. Locally enhanced features that include mixed
precipitation are image muted in gray. (a) Re-scaled snow rate field (mm hr−1 units), Feature detection
(b) best estimate, (c) underestimate, (d) overestimate. Feature detection fields show background regions
in teal, strong features in yellow, and faint features in orange. An animated version of this figure is
available in the Video Supplement Animation-Figure-4.10.
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storm are image muted, indicating melting and mixed precipitation and a transition to rain.

The northern part of the storm has numerous faint features over northern New York, Vermont,

New Hampshire, and Maine (Fig. 4.11a,b). In this example, the faint bands are more coherent in

time and space than the other examples and some of these faint bands evolve into strong bands

and some strong bands evolve into faint bands (Video Supplement Animation-Figure-4.11).

The winter storm from 7 February 2020 over the northeast US that is characterized by large

regions of melting (grey muted regions in Fig. 4.12). This example has a large, strong object

extending from Pennsylvania through New York but does not have any faint bands or sets of

multi-banded structures as discussed in Colle et al. (2023) (Fig. 4.12). This large, long, strong

feature spans the transition from snow to rain and is persistent in time for several hours (Video

Supplement Animation-Figure-4.12). It is very likely that the portion of the strong band to the

east of the SW-NW mixed precipitation area is rain rather than snow. Further feature filtering

by surface air temperature fields would be useful in cases like this to isolate surface snow.

4.4 Summary

We present a novel method for identifying locally-enhanced features in radar observations

of winter storms that uses a combination of increasing and decreasing adaptive thresholds

as a function of average background values. Our method identifies features from a snow rate

field that is rescaled from radar reflectivity in order to better automatically identify human

eye discernable features in radar data of snow. Previous methods to automatically detect snow

bands in radar observations either used inflexible thresholds and less precise reflectivity data

or used adaptive thresholds that were not able to detect objects that are not very distinct from

the background.This new method facilitates both the detection of stronger objects and fainter

objects that are less distinct from the background average in snow storms. The wider range

of characteristics of detected features provides a more comprehensive basis for examining

hypotheses relating radar-observed features to surface snowfall and intra-storm environments.

The output of the algorithm described in this paper yields 2D arrays with categorical values

for different strengths of detected radar echo features and background echo. These output

arrays can be input into image processing software to yield statistics of feature characteristics

such as area, aspect ratio, orientation, convex hull, centroid location, etc. (Yeh 2024). Object

attributes can be used to further subset objects and for comparison to other independent data

sources. Additionally, this algorithm can be applied to snow rate fields from numerical forecast

model output to yield feature objects for use in nowcasting and for model evaluation.

Differential adaptive threshold methods for image segmentation that distinguish locally en-

hanced features from a varying background have applications to several areas in geosciences. In
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Figure 4.11: Demonstration of bounding the best estimate feature detection with purposeful overesti-
mates and underestimates using radar example from 17 December 2019 16:23:59 UTC which features
many faint multi-bands. Locally enhanced features that include mixed precipitation are image muted in
gray. (a) Re-scaled snow rate field (mm hr−1 units), Feature detection (b) best estimate, (c) underestimate,
(d) overestimate. Feature detection fields show background regions in teal, strong features in yellow,
and faint features in orange. An animated version of this figure is available in the Video Supplement
Animation-Figure-4.11.
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Figure 4.12: Demonstration of bounding the best estimate feature detection with purposeful overesti-
mates and underestimates using radar example from 7 February 2020 13:27:58 UTC 17 which features a
large primary band, portions of which are mixed precipitation and image muted in gray. (a) Re-scaled
snow rate field (mm hr−1 units), Feature detection (b) best estimate, (c) underestimate, (d) overestimate.
Feature detection fields show background regions in teal, strong features in yellow, and faint features in
orange. An animated version of this figure is available in the Video Supplement Animation-Figure-4.12.
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satellite data analysis, detection of cold cloud tops associated with deep convective storm anvils

is often defined based on absolute IR brightness thresholds (Schiffer and Rossow 1983; Arkin

and Meisner 1987; Machado and Rossow 1993) but tropopause heights can vary latitudinally,

regionally, and seasonally. Additionally, satellite passive microwave brightness temperature

signatures associated with local enhancements in scattering and emission by precipitation

are harder to discern over the the more spatially varying thermal characteristics of land as

compared to ocean (Ferraro et al. 2013).

Video Supplement All animations can be viewed at: https://av.tib.eu/series/1524/.

Individual animations can be viewed by following the DOI URL.

Animation-Figure-4.9: Animated plot of Fig. 4.9 demonstrating bounding the best estimate

feature detection with purposeful overestimates and underestimates using an example from 7

February 2021 13:30-15:30 UTC which features a primary snow band and a few multi-bands.

Locally enhanced features that include mixed precipitation are image muted in gray (Tomkins

et al. 2022). (a) Re-scaled snow rate field (mm hr−1 units), Feature detection (b) best estimate,

(c) underestimate, (d) overestimate. Feature detection fields show background regions in teal,

strong features in yellow, and faint features in orange.

Title: 07 February 2021 feature detection example DOI: http://doi.org/10.5446/6317
0

Animation-Figure-4.10: Animated plot of Fig. 4.10 demonstrating bounding the best esti-

mate feature detection with purposeful overestimates and underestimates using an example

from 17 December 2020 05:30-07:30 UTC which features several strong primary bands and a

few faint multi-bands. Locally enhanced features that include mixed precipitation are image

muted in gray. (a) Re-scaled snow rate field (mm hr−1 units), Feature detection (b) best estimate,

(c) underestimate, (d) overestimate. Feature detection fields show background regions in teal,

strong features in yellow, and faint features in orange.

Title: 17 December 2020 feature detection example DOI: http://doi.org/10.5446/63
171

Animation-Figure-4.11: Animated plot of Fig. 4.11 demonstrating bounding the best esti-

mate feature detection with purposeful overestimates and underestimates using an example

from 17 December 2019 15:30-17:30 UTC which features many faint multi-bands. Locally

enhanced features that include mixed precipitation are image muted in gray. (a) Re-scaled

snow rate field (mm hr−1 units), Feature detection (b) best estimate, (c) underestimate, (d)

overestimate. Feature detection fields show background regions in teal, strong features in

yellow, and faint features in orange.

Title: 17 December 2019 feature detection example DOI: http://doi.org/10.5446/63
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172
Animation-Figure-4.12: Animated plot of Fig. 4.12 demonstrating bounding the best esti-

mate feature detection with purposeful overestimates and underestimates using an example

from 7 February 2020 12:30-14:30 UTC which features a large primary band, portions of which

are mixed precipitation and image muted in gray. (a) Re-scaled snow rate field (mm hr−1 units),

Feature detection (b) best estimate, (c) underestimate, (d) overestimate. Feature detection

fields show background regions in teal, strong features in yellow, and faint features in orange.

Title: 7 February 2020 feature detection example DOI: http://doi.org/10.5446/63168
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Chapter 5

Radar-observed characteristics and surface snow rates

In this chapter we examine the role that radar-observed characteristics in winter storms

have on the surface snowfall rates. Section 5.1 uses the features identified in Sec. 2.2.3/Chap. 4

to understand the impact of locally-enhanced reflectivity on surface snow rates. Section 5.2

uses the Doppler velocity waves classified in Sec. 2.2.5 to discern their relationship to surface

snow rates.

5.1 Enhanced reflectivity features

5.1.1 Scanning radar enhanced reflectivity features and hourly snow rates

To examine the relationship between enhanced reflectivity features and surface snow rates,

we compare the distributions of feature area × time fraction within 25 km of an ASOS station

and the liquid equivalent precipitation rate reported at the ASOS station. The area × time

fraction is calculated over the same hour that the precipitation accumulates. 2D distributions

for both faint and strong features are shown in Fig. 5.1. Faint features (Fig. 5.1a) are most often

associated with low and moderate snow rates (> 99%) and very rarely have heavy snow rates

(< 1%). The area × time fraction for faint features also rarely exceeds 0.5 (0.7% of observations)

which indicates that faint features occur over a small region for a short amount of time (Fig.

5.1). Strong features are also most often associated with low snow rates (Fig. 5.1b).

For the remainder of the analysis we will consider both faint and strong features together.

Figure 5.2 shows a 2D distribution of all features (faint + strong) and Fig. 5.3 shows the infor-

mation from Fig. 5.2 summarized in a bar chart. Considering the previous literature focused on

snow banding in winter storms (Chap. 1), we were expecting to see a trend in the joint distribu-
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Figure 5.1: 2D distributions of (a) faint and (b) strong feature area × time fraction versus liquid equiva-
lent precipitation rate [mm hr−1] for snow observations. Area × time fraction calculated with a 25 km
radius and observations are paired with a 0-hour lag. Zero feature area × time fraction observations
are removed. 0.5 area × time fraction is annotated with a vertical black dashed line and 2.5 mm hr−1 is
annotated with a horizontal black dashed line. Bold annotated numbers indicate number of hours in
each quadrant and italicized numbers indicate percent of total observations in each quadrant.

tion indicating a relationship between increasing feature area × time fraction and increasing

precipitation rate, however this is not the case for the large sample size examined in this study.

Most points (89.1%) are clustered in the lower left box where both area × time fraction and

precipitation rate are low. There are some observations where the area × time fraction and

precipitation rate are high, however they only account for ∼1.5% of the observations when the

feature area× time fraction is> 0. When the feature area× time fraction is> 0.5, 3 out of 4 times

the surface snow rates will be< 2.5 mm hr−1. The relationship between area× time fraction and

precipitation rate is examined for several lag times (0, 1, and 2 hours) and several radii around

the ASOS station (12.5, 25 and 50 km) in Sec. 5.1.4. While the details such as percentages in a

given quadrant of the plot change a bit, the overall lack of relationship between area × time

fraction and precipitation rate is unchanged.

We present representative examples of each category in Figs. 5.2 and 5.3. The first is an

example when high feature area × time fraction and heavy snowfall are observed over an hour

(Fig. 5.4). Panel a in Fig. 5.4 illustrates a large, strong feature over the Albany, NY ASOS station

which contributes to a feature area × time fraction of 0.62 over the hour and coincides with

an hourly liquid equivalent snowfall rate of 3.6 mm hr−1. Later in this event, there are several

hours at this station that were not included in our analysis because the wind speed was too

high (blue plus signs in Fig. 5.4c). While we expected to see more examples of this scenario
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Figure 5.2: 2D distribution of all feature (faint + strong) area × time fraction versus liquid equivalent
precipitation rate [mm hr−1] for snow observations. Area × time fraction calculated with a 25 km radius
and observations are paired with a 0-hour lag. Zero feature area× time fraction observations are removed.
0.5 area× time fraction is annotated with a vertical black dashed line and 2.5 mm hr−1 is annotated with
a horizontal black dashed line. Bold annotated numbers indicate number of hours in each quadrant
and italicized numbers indicate percent of total observations in each quadrant.
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Figure 5.3: Bar plot of the four categories shown in Fig. 5.2. In addition, the far left category, no locally
enhanced feature area (i.e. just background echo), is not shown in Fig. 5.2. Light blue bars represent light
and moderate snow rates (< 2.5 mm hr−1) and dark blue bars represent heavy snow rates (≥ 2.5 mm hr−1).

(high feature area, heavy snowfall), it is representative of only 1.5% of hours in our dataset.

Additionally, the feature resembles a primary band and is likely forced by frontogenesis which

we would expect to fall into this category.

The second example is from an event on 26 January 2021 where several strong and faint

features are moving through the region (Fig. 5.5a). In the snapshot in Fig. 5.5a, there is a strong

feature over the Providence, RI ASOS station which contributes to a feature area × time of 0.58

over the hour (Fig. 5.5). While the feature area × time fraction is high (> 0.5) in this example,

the snow rate is 2 mm hr−1 (Fig. 5.5c). This scenario when there is a high feature area × time

fraction but only a low/moderate snow rate represents 4.6% of hours in our dataset.

The next scenario is the most common occurrence in our dataset where a low feature

area × time fraction and a low/moderate snow rate is observed over the hour. This example

from Lebanon, NH shows only a small faint object in the vicinity of the ASOS station and has a

feature area × time fraction of 0.2 over the hour and a snow rate of 1.3 mm hr−1 (Fig. 5.6). For

the remainder of the event there are no features in the vicinity of the ASOS station and the snow

rate remains low/moderate (Fig. 5.6c). Scenarios similar to this when the feature area × time

fraction is low and the snow rate is low account for 89% of observations.

Lastly, we have an example when the feature area × time fraction is low but the snow rate is

heavy which occurs in 4.8% of our observations. This example from Worcester, MA shows an

hour where the liquid equivalent precipitation rate was 9.7 mm hr−1 but the feature area× time
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Figure 5.4: An example when a heavy snow rate (≥ 2.5 mm hr−1) and high feature area× time fraction (>
0.5) are observed over an hour. (a) Feature detection field from NEXRAD regional mosaic at 17 December
2020 04:38:12 UTC with Albany, NY ASOS station (KALB) and 25 km radius annotated in purple, (b) 2D
distribution from Fig. 5.2 with specific hourly observation (04:00-05:00 UTC) annotated with red plus
sign, and (c) time series of hourly precipitation rate over the entire event (16 December 20:00 UTC to 17
December 20:00 UTC) from KALB (blue annotations) and area of each feature category within 25 km
of KALB (yellow: strong area, orange: faint area, and teal: background area). In (c), purple vertical line
indicates time of specific NEXRAD regional mosaic in (a) and red bar on x-axis indicates the hour of
observation at the red plus sign in (b).
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Figure 5.5: An example when a low/moderate snow rate (< 2.5 mm hr−1) and high feature area × time
fraction (> 0.5) are observed over an hour. (a) Feature detection field from NEXRAD regional mosaic at
26 January 2021 21:07:39 UTC with Providence, RI ASOS station (KPVD) and 25 km radius annotated in
purple, (b) 2D distribution from Fig. 5.2 with specific hourly observation (21:00-22:00 UTC) annotated
with red plus sign, and (c) time series of hourly precipitation rate over the entire event (26 January 12:00
UTC to 27 January 00:00 UTC) from KPVD (blue annotations) and area of each feature category within
25 km of KPVD (yellow: strong area, orange: faint area, and teal: background area). In (c), purple vertical
line indicates time of specific NEXRAD regional mosaic in (a) and red bar on x-axis indicates the hour of
observation at the red plus sign in (b).
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Figure 5.6: An example when a low/moderate snow rate (< 2.5 mm hr−1) and low feature area × time
fraction (≤ 0.5) are observed over an hour. (a) Feature detection field from NEXRAD regional mosaic at
02 February 2021 07:08:30 UTC with Lebanon, NH ASOS station (KLEB) and 25 km radius annotated in
purple, (b) 2D distribution from Fig. 5.2 with specific hourly observation (07:00-08:00 UTC) annotated
with red plus sign, and (c) time series of hourly precipitation rate over the entire event (02 February
00:00 UTC to 03 February 00:00 UTC) from KLEB (blue annotations) and area of each feature category
within 25 km of KLEB (yellow: strong area, orange: faint area, and teal: background area). In (c), purple
vertical line indicates time of specific NEXRAD regional mosaic in (a) and red bar on x-axis indicates the
hour of observation at the red plus sign in (b).
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fraction was only 0.12 (Fig. 5.7). There are a few faint features in the area, but overall the echo

is patchy and not reminiscent of echo producing heavy snow. The time series shows that there

are several times in this event where the snow rate was heavy but there were little or no features

present over the station. These scenarios are commonly situations where there is long duration

of background or all types of echo rather than mostly locally-enhanced reflectivity features.

Additionally, because the height of the radar beam varies over the radar mosaics, it is possible

that the storm is shallow and the radar beam does not detect any locally-enhanced features.

Figure 5.7: An example when a heavy snow rate (≥ 2.5 mm hr−1) and low feature area× time fraction (≤
0.5) are observed over an hour. (a) Feature detection field from NEXRAD regional mosaic at 27 January
2021 08:51:40 UTC with Worcester, MA ASOS station (KORH) and 25 km radius annotated in purple, (b)
2D distribution from Fig. 5.2 with specific hourly observation (08:00-09:00 UTC) annotated with red
plus sign, and (c) time series of hourly precipitation rate over the entire event (27 January 00:00 UTC to
27 January 18:00 UTC) from KORH (blue annotations) and area of each feature category within 25 km of
KORH (yellow: strong area, orange: faint area, and teal: background area). In (c), purple vertical line
indicates time of specific NEXRAD regional mosaic in (a) and red bar on x-axis indicates the hour of
observation at the red plus sign in (b).
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5.1.2 Normalized distributions

The distribution in Fig. 5.2 is skewed towards lower snow rates. To remove this skewness,

we normalize the distribution by the precipitation rate and by the area × time fraction (Fig.

5.8). The 2D distribution is normalized by precipitation rate by dividing each bin by the sum

of observations in the given precipitation bin. Instead of a histogram normalized by all the

observations, here, we interpret each point as the likelihood of an outcome given the precip-

itation rate or area × time fraction bin it has been normalized by. When we normalize the

distribution in Fig. 5.2 by precipitation rate, the distribution’s skewness to lower snow rates is

visually removed (Fig. 5.8). Given that there are ∼15 times more observations where the snow

rate is< 2.5 mm hr−1 as compared for≥ 2.5 mm hr−1, we can be more confident in distributions

for the low snow rate subset. No strong relations between liquid equivalent snow rate and

area × time fraction are evident in these normalized plots. For liquid equivalent precipitation

≥ 5 mm hr−1 and area × time fractions > 0.6, the sample size are very small even with this 264

storm day data set.

Figure 5.8: Normalized 2D distributions of all feature (faint + strong) area × time fraction versus liquid
equivalent precipitation rate [mm hr−1] for snow observations. (a) Normalized by liquid equivalent
precipitation rate and (b) normalized by feature area× time fraction. Bins are color coded by the fraction
of observations within each (a) precipitation and (b) area× time fraction bin. Bins in a grey scale indicate
bins with less than 10 observations. Area× time fraction calculated with a 25 km radius and observations
are paired with a 0-hour lag. Zero feature area × time fraction observations are removed. 0.5 area × time
fraction is annotated with a vertical black dashed line and 2.5 mm hr−1 is annotated with a horizontal
black dashed line.
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5.1.3 Only background echo present

We also consider the subset of observations when there is only background echo present

and the feature area × time fraction is 0 (i.e. when there are no enhanced reflectivity features

surrounding the ASOS station). This subset corresponds to the left most category in Fig. 5.3.

The 2D distribution of background area × time fraction (i.e. fraction is calculated with the

background echo area only) and associated liquid equivalent precipitation rate indicates that

the snowfall rates tend to be light but heavier rates can be present associated with larger

background area × time fraction (Fig. 5.9). Hence, longer persistence of even just background

echo over the site can occasionally yield snow rates ≥ 2.5 mm hr−1 .

Figure 5.9: 2D distribution of background echo area × time fraction versus liquid equivalent precipi-
tation rate [mm hr−1] for snow observations when there are no locally enhanced features present (all
echo area minus the area of faint and strong features). Area × time fraction is calculated with a 25 km
radius and observations are paired with a 0-hour lag. 0.5 area× time fraction is annotated with a vertical
black dashed line and 2.5 mm hr−1 is annotated with a horizontal black dashed line. Bold annotated
numbers indicate number of hours in each quadrant and italicized numbers indicate percent of total
observations in each quadrant.
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5.1.4 Sensitivity of results

In this section we test the sensitivity of our results to the radius around the ASOS station,

time lag, beam altitude over the ASOS station, the percent of mixed precipitation echo removed,

and accumulation over a multi-hour time period.

Radius surrounding ASOS station

Since snow falls slowly (∼1 m s−1), it is easily advected by the wind and can be transported

many kilometers horizontally from where it initially forms aloft. To account for this horizontal

advection of snow, we test the sensitivity of the 25 km radius we chose in section 5.1. Figure

5.10 shows 2D distributions of feature area × time and precipitation rate for 3 different radii

(12.5, 25, 50 km) around the ASOS stations. All 3 distributions are similar in that most of the

observations are clustered in the bottom left quadrant (low feature area × time fraction and

low precipitation rate; Fig. 5.10). As expected, the 12.5 km radius has slightly more points with

high feature area × time fraction compared to the other two radii, while the 50 km radius has

slightly fewer points with high feature area × time fraction.

The region that the area × time is calculated over is 4 times bigger for a 25 km radius than a

12.5 km radius and 16 times bigger for a 50 km radius than a 12.5 km radius. Hence, increasing

the radius that the area × time fraction is calculated over results in increasing the skewness

of the distribution so that it shifts further into the bottom left corner of the 2D distribution

plots (i.e. lower feature area × time fraction, low precipitation rate). Changing the radius over

which the area × time is calculated does not yield a relationship between increasing feature

area × time fraction and increasing surface snow rates.

Time lag

Our results using a 0-hour lag (i.e. hour when feature area × time fraction is computed is

compared to the same hour that the precipitation accumulates over) are compared to a 1-hour

and 2-hour time lag (Fig. 5.11). Since the radar observations are 0-4 km above the surface

and snow falls slowly (∼1 m s−1) we wanted to see if there was a lag between the area × time

calculated from the radar data (above the surface) and the precipitation rate measured at the

surface. A 1-hour time lag pairs observations with a 1-hour offset. That is, the feature area× time

fraction is paired with the precipitation rate observations for the next hour. Similarly, a 2-hour

time lag pairs observations with a 2-hour offset. Figure 5.11 shows the 2D distributions of

feature area × time fraction and precipitation rate calculated with the 3 different time lags (0-,

1-, and 2-hour). Each distribution again has most of the observations clustered in the bottom

left quadrant (Fig. 5.11). The 2-hour lag has less observations in the upper right quadrant, but
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Figure 5.10: Sensitivity of results to radius over which area× time fraction is calculated. 2D distribution
of feature area× time fraction versus liquid equivalent precipitation rate [mm hr−1] for snow observations
using (a) 12.5 km radius, (b) 25 km radius and (c) 50 km radius. Observations are paired with a 0-hour
lag. Zero feature area × time fraction observations are removed. 0.5 area × time fraction is annotated
with a vertical black dashed line and 2.5 mm hr−1 is annotated with a horizontal black dashed line. Bold
annotated numbers indicate number of hours in each quadrant and italicized numbers indicate percent
of total observations in each quadrant.

otherwise there are no strong differences between the distributions. The lack of substantial

differences between the distributions indicates that our results are not sensitive to the time lag

used to pair the ASOS and radar observations.

Beam height

Because our regional radar composites are created using the 0.5° elevation angle, the altitude

of the points in the regional composites varies. It is possible that the variable altitude of the

radar data and thus area × time fraction could impact our results. To understand the impact

that the beam height has on the distributions, we calculate the average beam height within the

area and over the hour that the area × time fraction is calculated (i.e. 25 km) and use that to

threshold our distributions. Figure 5.12 shows the feature area × time fraction vs. precipitation

rate 2D distributions for observations when the beam height is ≤ 1000 m, 2000 m, and 3000 m.

Overall, there is very little differences between the distributions which indicates that the average

beam height does not have a large impact on our results.

Mixed Precipitation Area Removed

Since we calculate the area × time fraction after removing areas that are image muted

(regions that are likely melted or mixed precipitation), we test the sensitivity of our results to

the percent of area removed from the echo area calculation. If the area surrounding a station

has lots of muted regions over the hour, it could be underestimating the feature area × time
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Figure 5.11: Sensitivity of results to time-lag between radar-observed area × time fraction and hourly
surface snowfall rate. Area × time fraction calculated with a 25 km radius paired with (a) 0-hour lag, (b)
1-hour lag, (c) 2-hour lag surface snow rates. Zero feature area× time fraction observations are removed.
0.5 area× time fraction is annotated with a vertical black dashed line and 2.5 mm hr−1 is annotated with
a horizontal black dashed line. Bold annotated numbers indicate number of hours in each quadrant
and italicized numbers indicate percent of total observations in each quadrant.

Figure 5.12: Sensitivity of results to beam height above ASOS station. 2D distribution of feature
area × time fraction versus liquid equivalent precipitation rate [mm hr−1] for snow observations.
Area × time fraction calculated with a 25 km radius and and observations are paired with a 0-hour lag.
Observations where the average beam height is greater than (a) 1000 m, (b) 2000 m, and (c) 3000 m are
removed. Zero feature area × time fraction observations are removed. 0.5 area × time fraction is anno-
tated with a vertical black dashed line and 2.5 mm hr−1 is annotated with a horizontal black dashed line.
Bold annotated numbers indicate number of hours in each quadrant and italicized numbers indicate
percent of total observations in each quadrant.
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fraction. We threshold our distributions based on the percent of area muted averaged over the

hour (Fig. 5.13). A percent muted threshold of 50% means that on average, the area surrounding

the ASOS station was 50% muted over the hour. The threshold of 25% muted is the most strict

in that is allows for the least amount of muting to be present. In fig. 5.13, panel c (≤ 25%) is

a subset of panel b and panel a, panel b (≤ 50%) is a subset of panel a, and panel a (≤ 100%)

includes the entire dataset. Overall, there is not a lot of area muted – the 25% threshold only

excludes 386 hours of data (5%). This is likely because we are only considering observations

where it has been snowing for at least 4 hours so we wouldn’t expect to see a lot of mixed

precipitation regions. The distributions are very similar and do not change much with the

change in percent muted which indicates that our results are also not strongly sensitive to this

factor.

Figure 5.13: Sensitivity of results to average percent of echo area that is mixed precipitation over the
hour. Area × time fraction in snow is calculated with a 25 km radius and and observations are paired
with a 0-hour lag. Area × time fraction where the average area muted over the hour within 25 km is
(a) ≤ 100$ (i.e. all observations, repeats Fig. 5.2), ≤ 50%, and (c) ≤ 25% are removed. 0.5 area × time
fraction is annotated with a vertical black dashed line and 2.5 mm hr−1 is annotated with a horizontal
black dashed line. Bold annotated numbers indicate number of hours in each quadrant and italicized
numbers indicate percent of total observations in each quadrant.

Multi-hour accumulation

Lastly, we test the sensitivity of our results to the time the observations are accumulated

over. Similar to testing the sensitivity of the time lag, we wanted to examine if accumulating over

several hours changed the relationship between feature area × time fraction and precipitation

rate. Up until this point, we have integrated the area× time fraction over an hour to correspond

to the hourly precipitation accumulation reported by the ASOS stations. Figure 5.14 shows
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distributions of the area × time fraction when accumulating both observations over a 2- and

3-hour period. The scale on the y-axis is larger than the previous plots since the observations

have been summed over a longer period. In general, the patterns are similar to Fig. 5.2 and do

not indicate that accumulating over multiple hours substantially changes the findings.

Figure 5.14: Sensitivity of results to number of hours of accumulation. 2D distribution of feature
area × time fraction versus liquid equivalent precipitation rate [mm hr−1] for snow observations accu-
mulated over (a) 2 hours and (b) 3 hours. Area × time fraction calculated with a 25 km radius and and
observations are paired with a 0-hour lag. Zero feature area × time fraction observations are removed.
0.5 area × time fraction is annotated with a vertical black dashed line and 7.5 mm hr−1 is annotated
with a horizontal black dashed line.

5.1.5 Pragmatic considerations in nowcasting heavy snow using radar re-

flectivity observations

Heavy hourly snow rates in northeast US winter storms are rare. Over all the hourly ob-

servations presented here, heavy snow rates (> 2.5 mm hr−1) occurred < 4% of the time. This

analysis indicates that anecdotal evidence from case studies in the literature showing a strong

relation between heavier snow and enhanced reflectivity features is not representative for a

large sample size of 7606 hours, 264 storms, and 11 years. Equating snow bands with heavy snow

will usually lead to over prediction of hourly snowfall rates. Our large sample size shows that 3

out of 4 times situations with feature area × time fractions > 0.5 have liquid equivalent snow

rates < 2.5 mm hr−1. More hours with heavy snow occurred associated with smaller feature

areas (364 hours) as compared to larger feature areas (113 hours).
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Since locally-enhanced reflectivity features are not particularly helpful at identifying regions

of heavy snow rates, we calculate the area × time fraction for all echo areas to see if there are

patterns present (Fig. 5.15). The patterns in this 2D distribution indicate that heavy snow (> 2.5

mm hr−1) are more common when there is a large echo area × time fraction (i.e. there is a lot of

echo surrounding the station for a longer duration). This suggests that it is more useful to focus

on the duration of all echo over a location rather than the size, duration, and location of just

the locally-enhanced reflectivity features for predicting where higher snowfall accumulations

may occur. The distribution of snowfall rates has a strong skewness to low values, 75% of the

time it is snowing at a rate no more than 1 mm hr−1. So even if there is enhanced reflectivity

feature area it is more likely associated with a low snow rate than a heavy snow rate.

Figure 5.15: 2D distribution of all echo (background + faint features + strong features) area × time
fraction versus liquid equivalent precipitation rate [mm hr−1] for snow observations. Area× time fraction
is calculated with a 25 km radius and observations are paired with a 0-hour lag. 0.5 area × time fraction
is annotated with a vertical black dashed line and 2.5 mm hr−1 is annotated with a horizontal black
dashed line. Bold annotated numbers indicate number of hours in each quadrant and italicized numbers
indicate percent of total observations in each quadrant.
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5.1.6 Complicating factors in relating observed radar reflectivity to surface

snow rates

The lack of relationship between observed locally-enhanced reflectivity features and snow

rates indicates that the radar observations above the surface are not necessarily consistent

with snow rates observed at the surface. There are several factors that complicate the relation-

ship between reflectivity and snowfall rate that are not present in the relationship between

reflectivity and rain rate.

Changes in radar reflectivity do not necessarily translate to changes in ice mass. As is dis-

cussed in Chap. 1, processes such as aggregation can increase the reflectivity without increasing

the mass per unit volume (Table 1.1). In addition, whereas the typical fall speeds of raindrops

( 2-8 m s−1, depending on raindrop size) yield vertical column continuity of enhanced reflectiv-

ity features in rain, the slower fall speeds of snow ( 1± 0.5 m s−1) do not. High spatial resolution

aircraft radar data from winter storms indicates that snow rarely falls straight down to the

surface. Falling snow particles can be blown sideways more than 50 km horizontally from the

locations where they first achieve precipitation size near the top of the storm. Locally enhanced

reflectivity features tend to be tilted and smeared by the wind shear (changes in the wind speed

and direction with height) between echo top and the surface.

Vertical cross sections collected from radars aboard the ER-2 aircraft deployed during the

NASA IMPACTS field campaign (McMurdie et al. 2022) illustrate typical vertical structures and

horizontal wind profiles observed in winter storms (Figs. 5.16–5.21). There were 3 radars (4

frequencies total) that sampled storms during the campaign; EXRAD, HIWRAP (2 wavelengths),

and CRS (see Table 5.1 for details). The examples we present here have a reflectivity panel from

the radar with the longest wavelength that was available (usually EXRAD, and HIWRAP Ku-band

if EXRAD not available) and velocity and spectrum width from the shortest wavelength that

was available (usually CRS, and HIWRAP Ka-band if CRS not available). When available, VAD

horizontal winds derived from the EXRAD scanning beam (Helms et al. 2020) are shown on the

reflectivity cross sections and summarized with Contoured Frequency by Altitude Diagrams

(CFADs; Yuter and Houze 1995).

Doppler spectrum width is a proxy for turbulence. To correct the spectrum width field to

yield high quality data, we use equation 7 in Heymsfield et al. (1996) to isolate the spectrum

width of the hydrometeors and remove the spectrum width broadening caused by the aircraft

speed. In some cases, this correction causes the spectrum width numeric value to become

≤ 0 m s−1 (i.e. a nonphysical value; see Fig. 5.18c) which is ignored in the plotting as it represents

signal below the noise floor.

The first example from 5 February 2020 in the Midwest illustrates several types of variations
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Table 5.1: Band, frequency [GHz], sensitivity [dBZ] at 10 km (ER-2 radars)/1 km (KASPR), spatial
resolution [m] at 10 km below the aircraft (ER-2 radars)/above the radar (KASPR), and citation for radars
deployed on the ER-2 aircraft and at Stonybrook University deployed during NASA IMPACTS.

Radars Band Frequency Sensitivity Spatial Resolution Reference

EXRAD
(precip. radar)

X 9.6 GHz -12 dBZ 679 m Heymsfield et al. (1996)

HIWRAP
(precip. radar)

Ku 13.5 GHz -10 dBZ 672 m
Li et al. (2016)

Ka 35.5 GHz -12 dBZ 288 m
CRS

(cloud radar)
W 96 GHz -30 dBZ 137 m McLinden et al. (2021)

KASPR
(precip. radar)

Ka 35.3 GHz -40 dBZ 56 m Oue et al. (2024)

in the reflectivity field in the vertical (Fig. 5.16). At the beginning of the transect, when the

aircraft is travelling from the edge of the echo in the regional map (Northern Illinois; Fig. 5.16d)

the vertical cross sections indicate that the echo aloft is not reaching the surface (0-40 km,

0-1 km altitude in Fig. 5.16a). At ∼90 km along flight track, there are regions where there is

echo reaching the surface but "holes" in the echo aloft. Other regions along the cross section

show consistent echo through the vertical column and indicate lots of wind shear illustrated

by the wind barbs and bends in the local variations of the reflectivity field itself (i.e. 125-175

km in Fig. 5.16a). It is important to note that the cross sections are plotted in a 3:1 aspect ratio

so vertical features that are tilted are even more tilted in reality (see triangle icons next to Fig.

5.16c for visualization). CFADs of the wind speed (Fig. 5.16e) and wind direction (Fig. 5.16f)

along the track indicate considerable vertical wind shear. Horizontal wind speeds reach around

30 m s−1 at 5 km altitude near the top of the echo. The wind direction at 5 km altitude is roughly

perpendicular to the direction the aircraft is travelling indicating that snow particles forming

aloft will be transported out of the page by the wind as they descend to the surface (Fig. 5.16b,

c).

The next example from 7 February 2020 shows a transect over New York (Fig. 5.17). In this

example, the reflectivity is more uniform compared to the previous example (Fig. 5.17a). The

aircraft is travelling westward from a region of higher reflectivity in central New York to a region

of weaker reflectivity in western New York (Fig. 5.17a, d). This case was examined in Colle et al.

(2023) for the lack of snow banding despite considerable frontogenesis present (values > 10

K (100 km)−1 (3 hr)−1). The CFADs of the wind speed and direction from the transect indicate

speed shear and some directional shear (Fig. 5.17e,f). Similar to Fig. 5.16, the wind direction is

roughly perpendicular to the direction the aircraft is flying, indicating that the particles forming

aloft are advected away from the flight path – and hence the vertical plane of the cross-section
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Figure 5.16: Vertical cross-section from 5 February 2020 21:42:04 to 21:56:44 UTC of (a) reflectivity
[dBZ] from NASA EXRAD radar (nadir beam) and VAD winds derived from EXRAD radar (scanning
beam), (b) velocity [m s−1], and (c) spectrum width [m s−1] from NASA CRS cloud radar. All vertical
cross-sections are plotted with a 3:1 aspect ratio. Triangle icons next to (c) illustrate a 45° angle in a 1:1
and 3:1 aspect ratio. (d) Corresponding NEXRAD regional map of image muted reflectivity [dBZ]with
ER-2 flight path in green, arrowhead denotes direction and location of aircraft at time of region map.
CFADs of (e) wind speed and (f) wind direction of VAD winds in (a). Wind direction CFAD is plotted in
polar coordinates where the angle represents the direction and each radius represents the altitude (0 km
at the center). Black arrow in panel a indicates the compass direction of the aircraft during the transect.
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– as they fall (Fig. 5.17).

The remaining examples do not have VAD horizontal wind data available. We include a

panel of the feature detection field instead for context. An example from 23 January 2023 shows

a case where the aircraft flew parallel to strong, banded features in Maine and New Hampshire

(Fig. 5.18e). The reflectivity cross section shows features, known as ice streamers that are tilted

as they approach the surface. The top of the ice streamers are likely generating cells formed

from overturning circulations at cloud top (Fig. 5.18a). The velocity and spectrum width cross

sections indicate some overturning circulations near echo top between 150-200 km along the

flight track (Fig. 5.18b,c). Additionally, there are local enhancements (tilted blue lines in b and

corresponding higher spectral width in c) within the tilted ice streamers as particles originating

in the generating cells descend to the surface.

Figure 5.19 shows an example from a 300 km long flight track that flew over some faint

enhanced reflectivity features in the Gulf of Maine. The regional radar reflectivity indicates that

this storm had weaker and more patchy echo compared to the previous examples (Fig. 5.19d).

The radar cross sections show shallower echo tops (∼5 km altitude) compared to the previous

examples. Between 125 km and 175 km along flight track, enhanced reflectivity features tilt to

the right and then to the left. There are weak echo holes throughout the cross-section.

Figure 5.20 shows an example from 17 February 2022 when the aircraft sampled a faint,

banded feature over Lake Michigan (200-215 km along flight track). The flight track began over

central Indiana (southeast) over surface rainfall which transitioned to surface snow at ∼48

km along the flight track. This surface rain portion of the flight track is depicted as an image

muted area in gray in Fig. 5.20d and has a radar bright band, and high Doppler velocities and

spectral width in the rain layer between 0-48 km (Fig. 5.20abc). Along the flight track within

the snow layer between 6 and 2.5 km altitude, locally enhanced reflectivity features in snow

tend to tilt to the right (towards northwest). At the northwest end of the flight track when

the aircraft approaches the faint enhanced feature in the map (Fig. 5.20e) , there is a layer of

locally-enhanced reflectivity at ∼2.5 km altitude between 150-250 km (Fig. 5.20a) with weaker

to no echo below it. It is possible that the faint feature in the map manifests as the scanning

radar intersects part of this elevated region of enhanced reflectivity.

Figure 5.21 shows an example from a 400+ km long flight over southern New York and New

Jersey that travels parallel to several faint features. The reflectivity cross section shows fairly

shallow echo (< 5 km) that has tilted ice streamers reaching from near echo top to near the

surface (Fig. 5.21a). Following individual streamers along the plane of the cross-section there

is a typical horizontal displacement of about 30-40 km between near echo top and the surface.

Doppler velocity (Fig. 5.21b) indicates a layer at∼2.5 km altitude between∼160 to 275 km along

flight track with an undulating pattern which may indicate Kelvin-Helmholtz waves. There is
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Figure 5.17: Vertical cross-section from 7 February 2020 14:11:20 to 14:29:00 UTC of (a) reflectivity
[dBZ] from NASA EXRAD radar (nadir beam) and VAD winds derived from EXRAD radar (scanning
beam), (b) velocity [m s−1], and (c) spectrum width [m s−1] from NASA CRS cloud radar. All vertical
cross-sections are plotted with a 3:1 aspect ratio. Triangle icons next to (c) illustrate a 45° angle in a 1:1
and 3:1 aspect ratio. (d) Corresponding NEXRAD regional map of image muted reflectivity [dBZ]with
ER-2 flight path in green, arrowhead denotes direction and location of aircraft at time of region map.
CFADs of (e) wind speed and (f) wind direction of VAD winds in (a). Wind direction CFAD is plotted in
polar coordinates where the angle represents the direction and each radius represents the altitude (0 km
at the center). Black arrow in panel a indicates the compass direction of the aircraft during the transect.
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Figure 5.18: Vertical cross-section from 23 January 2023 14:59:16 to 15:22:02 UTC of (a) reflectivity
[dBZ] from NASA HIWRAP (Ku-band) radar, (b) velocity [m s−1], and (c) spectrum width [m s−1] from
NASA HIWRAP (Ka-band) radar. All vertical cross-sections are plotted with a 3:1 aspect ratio. Triangle
icons next to (c) illustrate a 45° angle in a 1:1 and 3:1 aspect ratio. Corresponding NEXRAD regional map
of (d) image muted reflectivity [dBZ]with ER-2 flight path in green and (e) feature detection classification
with ER-2 flight path in purple, arrowhead denotes direction and location of aircraft at time of region
map. Black arrow in panel a indicates the compass direction of the aircraft during the transect.
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Figure 5.19: Vertical cross-section from 28 February 2023 13:11:48 to 13:36:34 UTC of (a) reflectivity
[dBZ] from NASA EXRAD radar (nadir beam), (b) velocity [m s−1], and (c) spectrum width [m s−1] from
NASA HIWRAP (Ka-band) radar. All vertical cross-sections are plotted with a 3:1 aspect ratio. Triangle
icons next to (c) illustrate a 45° angle in a 1:1 and 3:1 aspect ratio. Corresponding NEXRAD regional map
of (d) image muted reflectivity [dBZ]with ER-2 flight path in green and (e) feature detection classification
with ER-2 flight path in purple, arrowhead denotes direction and location of aircraft at time of region
map. Black arrow in panel a indicates the compass direction of the aircraft during the transect.
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Figure 5.20: Vertical cross-section from 17 February 2022 20:13:11 to 20:34:43 UTC of (a) reflectivity
[dBZ] from NASA HIWRAP (Ku-band) radar, (b) velocity [m s−1], and (c) spectrum width [m s−1] from
NASA CRS cloud radar. All vertical cross-sections are plotted with a 3:1 aspect ratio. Triangle icons next
to (c) illustrate a 45° angle in a 1:1 and 3:1 aspect ratio. Corresponding NEXRAD regional map of (d)
image muted reflectivity [dBZ] with ER-2 flight path in green and (e) feature detection classification
with ER-2 flight path in purple, arrowhead denotes direction and location of aircraft at time of region
map. Black arrow in panel a indicates the compass direction of the aircraft during the transect.
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no obvious wave-like signatures in the reflectivity field at the same location.

89



90



Figure 5.21: Vertical cross-section from 13 February 2022 14:45:24 to 15:23:18 UTC of (a) reflectivity
[dBZ] from NASA HIWRAP (Ku-band) radar, (b) velocity [m s−1], and (c) spectrum width [m s−1] from
NASA CRS cloud radar. All vertical cross-sections are plotted with a 3:1 aspect ratio. Triangle icons next
to (c) illustrate a 45° angle in a 1:1 and 3:1 aspect ratio. Corresponding NEXRAD regional map of (d)
image muted reflectivity [dBZ] with ER-2 flight path in green and (e) feature detection classification
with ER-2 flight path in purple, arrowhead denotes direction and location of aircraft at time of region
map. Black arrow in panel a indicates the compass direction of the aircraft during the transect.

In addition to the vertical cross sections from NASA IMPACTS, we also use range-height

indicator (RHI) scans from the Ka-band (35 GHz) scanning fully polarimetric radar (KASPR)

located at Stonybrook University to illustrate vertical features in a winter storm (Figs. 5.22 and

5.23). The data from the ground-based KASPR radar has finer vertical and horizontal spatial

resolution than the ER-2 airborne radar data (Table 5.1). Unlike the airborne radars, which are

nadir pointing, the RHIs scan up and over the radar such that the azimuth angle of the radar

beams within the RHI varies from 15° elevation angle up to vertically pointing right over the

radar and then back down to 15° elevation angle at the other horizon. When the radar beam is

vertical or nearly vertical, the measured values of Doppler velocity and spectral width combine

vertical air motions with precipitation particle fall speeds. When the radar beam is closer to

horizontal, the measured motions are more indicative of the horizontal wind.

The effect of the changing component of the wind that is sampled as the radar beam

elevation angle changes is particularly noticeable in the RHIs of Doppler velocity data (Fig.

5.22b and 5.23b). Plotted velocity values in a given layer tend to be strongest at the left and

right edges of the RHI where the beam is more horizontal and peter out as the beam becomes

more vertical near the center of the RHI plot. Whereas in the ER-2 radar vertically pointing

data the Doppler velocity values were plotted with a range from -5 to 5 m s−1, in these RHI

plots, which are dominated by strong horizontal winds, the range plotted is -45 to 45 m s−1.

In the RHI plots, layers with low values of Doppler velocity indicate that the horizontal wind

direction is close to perpendicular to the beam (i.e. in or out of the plane of the cross-section).

A similar but less dramatic impact of beam angle on the measurements is apparent in the RHI

spectral width plots. Although turbulence is usually close to isotropic, the combination of the

air motion velocity spread with the strong signal from the often narrower precipitation fall

speed spread tends to reduce the net spectral width magnitudes when the beam is pointed

nearly vertical.

We feature two examples from 1-2 February 2022 when KASPR scanned fast update RHIs

through a winter storm over 40 hours. In the first example at 1 February 2022 1558 UTC, the

spectrum width is enhanced at echo top associated with overturning circulations (Fig. 5.22a).

Other narrow layers of enhanced spectrum width are present at several altitudes including

close to the surface (Fig. 5.22a). The Doppler velocity field helps to illustrate the horizontal
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winds and how they vary with height (Fig. 5.22b). Near cloud top the winds are left to right,

corresponding to a wind with a South component (wind coming from the south). In the layer

between 2.3 and 3 km AGL the magnitude of the velocity is near zero which indicates the wind

direction is pointing perpendicular to the radar beam. Between the surface and 1 km altitude

there is shift in the wind direction to a wind with a North component illustrated by the change

in sign of the Doppler velocity. The reflectivity field shows a lot of detail, including ice streamers

that manifest from the overturning circulations near echo top (Fig. 5.22c). The ice streamer

features become tilted and smeared on the way to the surface, likely due to the distinct layers

in the wind profile illustrated in the Doppler velocity field. In this example, the cross sections

are plotted in a 1:1 aspect ratio so the tilt of the features is shown as it occurs in reality. As the

snow particles within the enhanced reflectivity features descend in the storm they move much

faster sideways than they do vertically. Unless the horizontal winds are very weak, snow cannot

fall "straight" down in a column. It is also important to note that the precipitation particles

are not all falling within the plane of the RHI. In particular, reflectivity values at altitudes with

layers of near zero Doppler velocity are potentially either moving in or out perpendicular to

the cross-section. Whenever the wind direction changes between layers, the trajectories of

individual precipitation particles turn with the wind, yielding complex 3D trajectories between

their origination near cloud top and the surface.

In the second example a few hours later at 1928 UTC, the echo is slightly shallower overall

and the reflectivity field is more variable near cloud top varying from close to minimum de-

tectable echo at -5 dBZ to close to 25 dBZ (Fig. 5.23c). There is some locally higher spectral width

and likely turbulence close to 5 km altitude near echo top at the location of generating cells

near -24 to -26 km and directly above the radar near 0 km (Fig. 5.23a). There is a discontinuity

in the direction of tilt of ice streamers within the reflectivity field at about 3 km altitude from

toward the right (North) to toward the left (South) corresponding to the wind shift observed

in the Doppler velocity field (Fig. 5.23b). Similar to at 1558 UTC, the wind also sharply shifts

direction to a North wind at about 1 km altitude above the surface.

The aircraft radar cross sections from the NASA IMPACTS campaign and RHI scans from

KASPR radar illustrate how features in the reflectivity field are often tilted and smeared in winter

storms. For winter storms with snow, there is a general lack of vertical column continuity of

enhanced reflectivity features. The lack of vertical column continuity of enhanced reflectivity

aloft to the surface complicates the interpretation of reflectivity from scanning radar and

provides a likely explanation for why we are not seeing a strong relationship between enhanced

reflectivity aloft and snow rates at the surface.
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Figure 5.22: RHIs scanned up and over the radar (at 0 km on x-axis) of (a) Spectrum Width [m s−1],
(b) Doppler Velocity [m s−1], and (c) Reflectivity [dBZ] from the KASPR radar at Stonybrook University
at 15:58:42 UTC on 1 February 2021. Radar beam is partially blocked near edge of scan on right side.
Plotted in a 1:1 aspect ratio.
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Figure 5.23: RHIs scanned up and over the radar (at 0 km on x-axis) of (a) Spectrum Width [m s−1],
(b) Doppler Velocity [m s−1], and (c) Reflectivity [dBZ] from the KASPR radar at Stonybrook University
at 19:28:51 UTC on 1 February 2021. Radar beam is partially blocked near edge of scan on right side.
Plotted in a 1:1 aspect ratio.
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5.2 Velocity waves

In this section we explore the relationship between velocity waves and surface snowfall

rates and determine if there is any evidence that velocity waves are associated with heavier

snowfall rates or enhanced reflectivity features.

To test the relationship between the presence of velocity waves and the surface snowfall rate,

we pair the hourly wave classifications described in Sec. 2.2.5 with the hourly liquid equivalent

precipitation rates described in Sec. 2.3. We combine YES and MAYBE observations into a single

category and compare the distributions of precipitation rate. Figure 5.24 presents the precipi-

tation rates for each category paired with a 0-hour lag as a scatter plot. Each precipitation rate

observation is jittered from the category center so the overlapping points are more easily visible.

For the remainder of the analysis we consider the observations from NYC and Massachusetts

together. Distributions of precipitation rate for each classification are presented as histograms

with a probability density function (Fig. 5.25). Both Fig. 5.24 and 5.25 show that there are very

few YES and MAYBE observations (191 hours) compared to NO observations (4105 hours). It

is difficult to deduce any sort of relationship from the scatter plot (Fig. 5.24), however, the

probability density functions in Fig. 5.25 indicate the precipitation rate distribution is slightly

skewed to higher rates for the YES +MAYBE category.

As in Sec. 5.1.4, we test the robustness of our results to the time lag that is used to pair the

observations together. The number of hours for each category and each time lag is summarized

in Table 5.2. Probability density functions for each category and time lag are shown in Fig.

5.26 and a summary of the distributions is presented in Table 5.3. For hours with NO waves,

the distribution is almost identical for all time lags (Fig. 5.26b) and the 25th, 50th, and 75th

percentile are identical (Table 5.3). For times with waves (YES +MAYBE) the distribution for 1-

and 2-hour time lags is shifted to lower values compared to the 0-hour lag (also described with

the median values in Table 5.3). For all times, the means and medians for the times with waves

(YES +MAYBE) are higher than the means and medians for the times without waves (NO)

[Table 5.3]. This suggests that times and locations with velocity waves have a slightly higher

precipitation rates than times without waves. To test the significance of these differences, we

use permutation tests, described in the next section.

Table 5.2: Number of observations for each category.

YES +MAYBE NO Total
0-hour lag 191 4105 4296
1-hour lag 178 4026 4204
2-hour lag 151 3947 4098
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Figure 5.24: Joint occurrence of Doppler velocity waves and snow rates in the same hour. Plot of liquid
equivalent precipitation rate [mm hr−1] for times with YES +MAYBE waves and NO waves. Points are
"jittered" to limit overlap and colored by the region (New York City metro area - blue, Massachusetts -
red).

5.2.1 Permutation tests

To determine if the differences in the distributions of precipitation rates when waves are and

are not present are statistically different, we use permutation tests (also known as Monte Carlo

permutation tests; LaFleur and Greevy 2009; Holt and Sullivan 2023; Good 2013). Permutation

tests are a form of resampling and are more general than other types of significance tests since

they do not assume a particular distribution (Good 2013).

The null hypothesis is that the precipitation rate distributions when waves are and are not

present are not statistically different (i.e. the distribution of precipitation rates when waves

are present could be a random sample of the entire distribution). To perform the testing, we

randomly sample 191 liquid equivalent precipitation rates from the entire dataset of 4296

points and calculate the median and mean of these 191 sampled points. We randomly sample

191 points from the entire distribution as this is the number of hours when waves are present

for a 0-hour lag.
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Figure 5.25: Distributions of snow rates during periods with and without velocity waves. Histograms of
liquid equivalent precipitation rate [mm hr−1] for times with (a) YES +MAYBE waves and (b) NO waves.
Curve on each plot represents the probability density function.

Figure 5.26: Sensitivity of velocity wave occurrence and snow rate distributions by time lag. Probability
density functions of liquid equivalent precipitation rate [mm hr−1] for times with (a) YES +MAYBE
waves and (b) NO waves. Curves are colored by the time lag. Vertical dashed lines annotate the median
values.
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Table 5.3: 25th, 50th, 75th percentiles, and mean values for liquid water equivalent precipitation rate
distributions for YES +MAYBE and NO waves and for 0-, 1-, and 2-hour time lags. Bottom panel is
the 95th percentile of median and mean values from permutation tests (see also Fig. 5.27). Units are
mm hr−1.

YES +MAYBE NO
25th 50th Mean 75th 25th 50th Mean 75th

0-hour lag 0.3 0.76 1.09 1.3 0 0.3 0.67 0.8
1-hour lag 0.3 0.51 0.95 1.29 0 0.3 0.68 0.8
2-hour lag 0.3 0.51 0.94 1.29 0 0.3 0.67 0.8

95th percentile of median
and mean precip. rates from

permutation tests
Median Mean

0-hour lag 0.5 0.94
1-hour lag 0.5 0.937
2-hour lag 0.5 0.951

We repeat the process 10,000 times and then compare the 95th percentile of the medians and

means of the randomly sampled precipitation rates to the median and mean of the precipitation

rate during time when waves are present. When the median or mean of the distribution when

waves are present is greater than the 95th percentile, the distribution is considered unlikely to

be from the same distribution as a whole and is interpreted to be not random.

Distributions of the sampled median and mean values for 0-, 1-, and 2-hour lags are shown

in Fig. 5.27 and summarized in the bottom half of Table 5.3. For the 0-hour lag, the median

(0.76 mm hr−1) and mean (1.09 mm hr−1) of the actual YES+MAYBE distribution are both larger

than the 95th percentile of medians (0.5 mm hr−1) and means (0.94 mm hr−1) of the randomly

sampled distributions. This indicates that the there is a less than 5% chance that the actual

values could be achieved at random. The median and mean for the 1-hour lag and the median

for the 2-hour lag barely exceed the criteria (actual median 0.51 mm hr−1 and random median

0.5 mm hr−1 for both the 1-hour and 2-hour lags).

The results from the permutation tests indicate that for observations paired with a 0-hour

lag, times with velocity waves are associated with slightly higher snowfall rates than times

without waves. Since pairs of velocity waves are associated with convergence and divergence

(Miller et al. 2022), if the ice mass growth in upward moving air (by riming and/or vapor

deposition) is not reversed in the downward moving air (by sublimation) then there is net

increase in ice mass. To investigate this finding further, future work is needed that is beyond

the scope of this thesis. It is possible that the higher snowfall rates in times with waves may be

related to an association between velocity waves and frontogenesis. Based on previous work,

98



waves are often found ahead of a warm front or in the vicinity of an occluded front where

stronger frontogenesis can occur. It is possible that the slightly higher snowfall rates are related

to upward motions associated with frontogenesis rather than physical processes in the waves

independent of frontogenesis.

5.2.2 Relationship to enhanced reflectivity features

In addition to testing the relationship between velocity waves and precipitation rate, we

also wanted to investigate any potential relationship between velocity waves and enhanced

reflectivity feature area. Hoban (2016) hypothesized that velocity waves may be a mechanism

for forming multibands. If this hypothesis is true then we might expect to see higher feature

area during times when velocity waves occur. Figure 5.28 shows 2D distributions of feature

area × time fraction versus liquid equivalent precipitation rate for times with and without

waves. This figure highlights the few observations we have with waves (191) compared to the

observations we have without waves (4105). Although we looked at 264 storms over 11 years

in both the NY and MA areas, there were only 8 observations with velocity waves and feature

area × time fraction > 0.5. It is difficult to make any conclusions with so few observations,

although the information we do have indicates that velocity waves are likely not frequently

related to locally-enhanced reflectivity features.

5.3 Summary

In this chapter we examined the relationship between radar-observed characteristics of

winter storms and surface snowfall precipitation rates. Specifically, we looked at the locally-

enhanced reflectivity features surrounding ASOS stations and their relationship with surface

snow rates. We also examined potential associations between velocity waves and surface snow

rates.

When comparing the feature area × time fraction from the feature detection field in the

regional radar maps to the liquid equivalent precipitation rate from the ASOS stations, we

found little to no relationship between feature area and precipitation rate. This indicates that

locally-enhanced reflectivity features, i.e. snow bands, are not good indicators of heavy hourly

snow rates at the surface. Rather, the duration of any radar echo over the ASOS station is more

informative of hourly snowfall rates. We found that our results were not sensitive to the radius

over which we calculate area × time fraction, the time lag that we paired the observations with,

the average height of the radar beam above the ASOS station, the amount of mixed precipitation

in the region, or the time period the statistics were accumulated over.
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Figure 5.27: Median and mean snow rates in subsets of 191 out of 4396 samples randomly chosen over
10,000 permutation tests. Histograms of (a, c, e) median and (b, d, f) mean liquid equivalent precipitation
rate [mm hr−1] for (a, b) 0-hour lag, (c, d) 1-hour lag, and (e, f) 2-hour lag. Dark blue vertical dashed line
indicates the 95th percentile of the distribution and Gold vertical dashed line indicates the median or
mean precipitation rate of the YES waves distribution.
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Figure 5.28: Velocity wave occurrence and 2D distribution of feature area × time fraction versus liquid
equivalent precipitation rate [mm hr−1] for snow observations. Area × time fraction calculated with a
25 km radius and and observations are paired with the following wave classifications (a) YES +MAYBE,
(b) NO. 0.5 area × time fraction is annotated with a vertical black dashed line and 2.5 mm hr−1 is
annotated with a horizontal black dashed line. Bold annotated numbers indicate number of hours in
each quadrant and italicized numbers indicate percent of total observations in each quadrant.

There is considerable uncertainty in relating remote sensing observations within snow to

surface snowfall rates (Fujiyoshi et al. 1990; Rasmussen et al. 2003). Our results showing that

duration of any radar echo is more relevant than the presence of snow bands suggest that it

may be better to use area-threshold methods (e.g., Krajewski et al. 1992) rather than pixel by

pixel retrievals to estimate snowfall accumulations.

To determine the relationship between velocity waves and snow rate, we compared dis-

tributions of liquid equivalent precipitation rate during times with waves (hours classified as

YES or MAYBE) and without waves (hours classified as NO). We found that snow rates were

slightly higher during times with velocity waves and that this result is unlikely to be by chance

at 0-hour lag. There were too few observations with velocity and enhanced reflectivity feature

area × time fraction > 0.5 to make any conclusions.

The results here argue that case studies that suggested a strong relationship between snow

bands and surface snow rates were not representative of a large sample size. Operational

forecasters are better off looking for areas of strong frontogenesis and duration of snow echo

since focusing on where snow bands and velocity waves are occurring does not seem to add

any skill.
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Chapter 6

Variations in snowfall rates with storm structure and evolution

Previous work has shown that primary snow bands are associated with strong frontogenesis

(Novak et al. 2004; Ganetis et al. 2018). Frontogenesis is typically observed ahead of the warm

front and in the northeast and northwest quadrants relative to the low pressure center, while

frontolysis is typically found behind the cold front (Fig. 6.1). Han et al. (2007) created the

conceptual diagram in Fig. 6.1 after analyzing the structure and associated frontal circulations of

2 extratropical cyclones using numerical simulations. Colle et al. (2014) observed microphysical

properties at Stonybrook University in the context of low pressure centers for 12 northeast US

winter storms. They found that riming intensity was dependent on the location relative to the

cyclone and the associated patterns of temperature and vertical motion. Their work showed

moderate and heavily rimed snow particles tend to occur in the northwest quadrant and closer

to low pressure centers and when the vertical motion maximum is lower in the atmosphere at

higher temperatures (Fig. 6.2).

In this chapter, we briefly examine some basic relationships among the large-scale structure

and evolution of the storm and the surface snow rates. We use the low pressure tracks to

determine the location, strength, and evolution of the low pressure center.

6.1 Snow rate and geographic pattern and distribution

To visualize the distribution of hourly snow rates relative to the low pressure center, we

present a plot of precipitation rates in a Lagrangian framework, where the center of the plot

represents the low pressure center and the points are plotted relative to the low (Fig. 6.3a).

Each point in Fig. 6.3 represents an hourly snow rate at an ASOS station. Most of the winter

season storms with appreciable snow had low center tracks offshore of the northeast US (Fig.
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Figure 6.1: Idealized schematic of frontogenesis and deformation in the context of an extratopical low
pressure system. Figure 18 from Han et al. (2007).

103



Figure 6.2: Observed snow particle characteristics manually classified based on surface observations
in 12 storms and plotted relative to an idealized cloud shield and frontal positions in (a) the developing
cyclone stage and (b) the mature cylcone stage. Riming intensity ranges from no riming (open circle) to
heavy riming (filled black circle). Figure 3 from Colle et al. (2014).
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Table 6.1: Number of observations and median and mean values of precipitation rate distribution by
storm quadrant.

Number of observations
Liquid Equivalent

Precipitation Rate [mm hr−1]
Median Mean

NW 3329 0.3 0.58
NE 1877 0.5 0.84
SW 913 0 0.35
SE 442 0.3 0.67

2.9). This tendency for the low tracks to be offshore and the shape of the coastline yields a

geographic bias of the sample to favor observations in the northwest quadrant relative to the

low pressure center (Fig. 6.3a). There is sufficient density of observations in the northwest

quadrant to suggest a gradient in snow rates with higher values more common closer to the

low pressure center. The northeast quadrant, where frontogenesis typically occurs associated

with the warm front, had the highest median and mean hourly snow rates among the four

quadrants (Table 6.1).

The low-centric spatial distributions of snow rate align with our expectations given typical

spatial patterns of large-scale lifting associated with different storm stages (Fig. 6.3) indicating

that frontogenesis and frontolysis are likely dominant mechanisms at play. We did not directly

look at the role of frontogenesis in these observations, but our collaborators at Stonybrook

University have found that frontogenesis in these storms most commonly occurs in the NE

quadrant and stretches into the eastern portion of the NW quadrant (Yeh 2023). More active

riming closer to the low, as found in Colle et al. (2014), would be consistent with heavier

liquid water equivalents all other factors being equal but ASOS data does not let us assess this

hypothesis.

In Figure 6.4, the data in Figure 6.3a are shown in terms of 2D distributions of the distance

to low pressure center vs. liquid equivalent precipitation rate. Low snow rates are the most

common observations in all four quadrants. Heavy snow rates (> 2.5 mm hr−1 liquid water

equivalent) are rare and those that do occur tend to be in the northwest or northeast quadrants

(Fig. 6.4). Overall in the northwest quadrant of these northeast US winter storms, the occurrence

of snow observations is more common between 250 to 1000 km distance from the low pressure

center as compared to closer or further away.

As a further check to see if there are any robust relations among our variables, we normalize

the 2D distribution in Fig. 6.4a by the snow rate and by the distance to low pressure center

(Fig. 6.5). The normalized plots help to visually reduce the skewness in the 2D distribution in

Fig. 6.4. The histogram normalized by the snow rate (Fig. 6.5a) indicates that snow rates of all
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Figure 6.3: Lagrangian low-centric framework plot of hourly snowfall rates. The center of each plot
represents the tracked low pressure center and each point represents 1 hour of data from an ASOS
station colored by the associated liquid equivalent snowfall rate. (a) shows all data, (b) and (c) are the
same data subset by pressure tendency magnitude above and below -1 hPa hr−1.
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Figure 6.4: 2D distribution of distance to low pressure center [km] versus liquid equivalent precipitation
rate [mm hr−1] for (a) all observations (median: 647 km), and observations in the (b) northwest (median:
592 km), (c) northeast (median: 722 km), (d) southwest (median: 768 km), and (e) southeast (median:
777 km) quadrants relative to the low pressure center. In each panel the median distance is annotated
with a vertical black dashed line and 2.5 mm hr−1 is annotated with a horizontal black dashed line.
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magnitudes are most common between 250-750 km from the low pressure center. Normalizing

the histogram by the distance to low pressure center (Fig. 6.5b) shows that for any given distance

from the low pressure center, very low snow rates (< 0.5 mm hr−1 liquid water equivalent) are

the most common.

Figure 6.5: Normalized 2D distributions of distance to low pressure center [km] versus liquid equivalent
precipitation rate [mm hr−1] for snow observations. (a) Normalized by liquid equivalent precipitation rate
and (b) normalized by distance to low pressure center. Bins are colored by the fraction of observations
within each (a) precipitation and (b) distance bin. Bins colored in a grey scale indicate those with less
than 10 observations. 2.5 mm hr−1 is annotated with a horizontal black dashed line.

6.2 Snow rates associated with different storm stages (pressure

tendency)

In this section, we explore potential relationships between the storm stage and surface

snowfall rates. To do this, we look at the distributions of snow rates in the context of 3-hour

pressure tendencies – both of the low pressure center and at the ASOS surface station. Hourly

snow rate observations subset on the cyclone’s 3-hour pressure tendency (Figure 6.3b,c) indicate

that rapid intensification (3-hour pressure tendency ≤ -1 hPa hr−1) occurs for about 30% of the

snow observations and those observations are mostly in the northwest and northeast quadrants.

Values of 3-hour pressure tendency > -1 hPa hr−1 correspond to times when the pressure is

increasing, not changing, or only slightly decreasing. Taking into account the geographic bias
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of observations associated with the near coastal low pressure tracks, there is some evidence

that stronger snow rates during periods of cyclone rapid intensification mostly occur in the

northwest quadrant within 500 km of the low pressure center (Fig. 6.3c).

In addition to examining the pressure tendency within the low pressure center, we also

evaluated the pressure tendency at the ASOS surface station and the relationship with surface

snow rates. Figure 6.6 shows a 2D distributions of 3-hour station pressure tendency [hPa hr−1]

and liquid equivalent precipitation rate [mm hr−1]. Roughly 86% of heavy snow observations (>

2.5 mm hr−1) were observed during times when the 3-hour pressure tendency observed at the

ASOS station was negative (i.e. pressure was decreasing). When the pressure was increasing,

the vast majority (> 98%) of the snow observations were < 2.5 mm hr−1 (Fig. 6.6). Stations in

the northeast and southeast quadrants have lower median 3-hour pressure tendencies (both

-0.77 hPa hr−1) compared to the medians for the stations in the northwest (-0.27 hPa hr−1) and

southwest (0.1 hPa hr−1) quadrants (Fig. 6.6). Visually removing the skewness by normalizing

the plots by liquid equivalent precipitation rate indicates that for a given snow rate, the 3-hour

pressure tendency is likely to decrease as the snow rate increases (Fig. 6.7a). Normalizing by

the pressure tendency (Fig. 6.7b) does not add much information to what is shown in Figure

6.6.

6.3 Summary

In this chapter we examined the relationships between hourly snowfall rates and the storm

structure and storm stage. Our findings our consistent with previous work in that most hourly

heavy snow observations occur in the northwest and northeast storm quadrants, are found

closer to the low pressure center (usually within 500 km), and are associated with regions of

large-scale lifting (i.e. strong frontogenesis) (e.g. Han et al. 2007; Novak et al. 2010; Colle et al.

2014; Ganetis et al. 2018). Our collaborators at Stonybrook University (P. Yeh, personal commu-

nication) are doing a comprehensive analysis of the variability of northeast US winter storm

precipitation structures within the cyclone comma head and their relations to lift, stability,

and shear which will expand upon and complement the work in this thesis.
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Figure 6.6: 2D distribution of 3-hour station pressure tendency [hPa hr−1] versus liquid equivalent
precipitation rate [mm hr−1] for (a) all observations (median: -0.4 hPa hr−1) and observations in the
(b) northwest (median: -0.27 hPa hr−1), (c) northeast (median: -0.77 hPa hr−1), (c) southwest (median:
0.1 hPa hr−1), and (d) southeast (median: -0.77 hPa hr−1) storm quadrants relative to the low pressure
center. In (a) 0 hPa hr−1 is annotated with a vertical black dashed line and 2.5 mm hr−1 is annotated
with a horizontal black dashed line. Median pressure tendency is annotated with a vertical black dashed
line in (b)–(e).
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Figure 6.7: Normalized 2D distribution of 3-hour MSLP tendency [hPa hr−1] versus liquid equivalent
precipitation rate [mm hr−1] for snow observations (a) normalized by liquid equivalent precipitation
rate and (b) normalized by 3-hour MSLP tendency. Bins are colored by the fraction of observations
within each (a) precipitation and (b) pressure tendency bin. Bins colored in a grey scale indicate bins
with less than 10 observations. 0 hPa hr−1 is annotated with a vertical black dashed line and 2.5 mm hr−1

is annotated with a horizontal black dashed line.
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Chapter 7

Summary and Conclusions

7.1 Summary

Where and when heavy snow is likely to occur in winter storms is both a high impact and

thorny problem. We analyzed observations of a large sample of winter storm events in the

northeast US from 264 storm days over 11 years (2012-2023) to improve the understanding of

how hourly snowfall rates relate to structural characteristics of winter storms. Motivated by

previous work, we examined several types of storm characteristics that are "prime suspects"

in the occurrence of heavy snowfall: mesoscale snow bands (locally-enhanced reflectivity

features), sets of mesoscale waves in velocity, and synoptic scale storm quadrant and pressure

tendency. Regional radar mosaics over the northeast US were created from the NWS NEXRAD

network including two new objective image processing methods developed specifically for this

thesis work; the removal of mixed precipitation areas (image muting) and the identification of

locally-enhanced reflectivity features in snow. Potential associations between radar reflectivity

structures in the vicinity of ASOS stations and hourly snow rates were examined in terms of

incidence of locally-enhanced reflectivity features as well as all snow echo. Regional radar

mosaics of Doppler velocity waves were created to analyze the relationship between velocity

waves and hourly surface snow rate. Additionally, we extracted low pressure center tracks from

ERA5 reanalysis data to analyze the spatial pattern of snow rates relative to the low pressure

center.

Evidence from our analysis demonstrates that locally-enhanced reflectivity features are not

consistently associated with heavy snowfall rates. This is partially due to the fact that enhanced

radar reflectivity in snow does not always imply increased ice mass (i.e. aggregation, Table 1.1)

and snow particles do not fall straight down, rather they are usually transported horizontally
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10s of km from the location where they originally reached precipitation size. Our work suggests

that it is more useful to focus on the duration of snow radar echo over a given location to predict

higher snowfall accumulations rather than the locally-enhanced reflectivity features.

We examined the relationship between velocity waves and enhanced precipitation and

found that while the precipitation rate during times with waves was slightly higher than times

without waves and likely to not be random, the difference is small. We suspect that the slightly

higher snow rates during times with waves may have more to do with frontogenesis than the

waves themselves but this requires further work to determine. Sets of mesoscale velocity waves

are often observed ahead of a warm front and near the occluded front (Hoban 2016), where

frontogenesis typically occurs (Fig. 6.1). We also did not find any evidence that velocity waves

had an association with enhanced reflectivity features.

Visualizing snow rates in a Lagrangian framework aligns with expectations given the regions

where frontogenesis is likely to occur (Fig. 6.1). We found that higher snow rates were typically

found closer to the low pressure center, particularly in the northwest and northeast quadrants.

Higher snow rates were more prevalent when the pressure at the ASOS station was decreasing

indicating that higher snow rates are more likely when the low pressure system is deepening.

7.2 Conclusions

Most of the time in northeast US winter storms, the snow rates are low (75% of hours had

liquid equivalent snow rates less than 1 mm hr−1 and only 6% of hours had snow rates > 2.5

mm hr−1). Our data set excludes conditions with high winds (> 5 m s−1) so these data are

representative of non-blizzard conditions.

While case studies can be informative, they may not be representative. Case studies often

focus on extreme examples and the lessons learned can not necessarily be generalized to a large

sample winter storms that includes a range of storm intensities and durations. Previous case

studies of winter storms have focused on events with high snowfall accumulations and have

encouraged the idea that all snow bands are associated with heavy snow at the surface which

this work shows is not accurate. Primary bands are associated with strong frontogenesis and

high snowfall accumulation but don’t occur that often (Novak et al. 2004; Kenyon et al. 2020;

Ganetis et al. 2018). Multi-bands occur more frequently but are found in environments with

and without frontogenesis (Ganetis et al. 2018). The NASA IMPACTS winter field program was

organized around improving understanding of mesoscale snow bands with the goal to improved

prediction of snowfall accumulation. Our findings indicate that mesoscale snowbands are

features of the reflectivity field that are not that informative about heavy snow.

Our results confirm findings from previous work which suggests that prioritizing times and
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locations where the low pressure is deepening and locations of large-scale lifting (i.e. strong

frontogenesis) is beneficial when predicting heavy snow rates. Additionally, our work indicates

that examining the duration (time and location) of all snow precipitation radar echo is more

useful for forecasting regions of high snow accumulation rather than focusing on mesoscale

snow bands.

7.3 Future Work

It would be useful to thoroughly and quantitatively examine relative skill of using the

duration of snowfall above a threshold (e.g. area threshold methods, Krajewski et al. 1992) to

estimate snowfall accumulation as compared to conventional methods applying Z-S relations

pixel by pixel for each scan. This method could be tested using a variety of snow rate thresholds

(e.g. 0.5, 1, 2 mm hr−1) and by using different Z-S relationships to convert to snow rate.

This work covers nearly the entire NEXRAD archive (post dual-polarization implementation)

for the northeast US so there are not any more observations for this region available. Similar

methods could be applied to storms in the central US and a collaborator (A. Michaelis, personal

communication) is working on this. The Western US has too much beam blockage and few

storm tracks (Bentley et al. 2019) to be suitable for this type of analysis.

The wind profile plays a role in determining the vertical column continuity of snowfall. It

may be useful to explore the Lagrangian patterns of the vertical wind profile using upper air

sounding data sets. The New York State Mesonet includes 17 wind profilers which also may be

suitable for this purpose (Brotzge et al. 2020).

We are in the early stages of adapting our feature detection method to identify local en-

hancements in the vertical cross sections of reflectivity from the ER-2 radars which will help to

quantify the natures of tilted and smeared features but the ER-2 data set comprises only 74

flight legs with snow to the surface.

Primary snow bands (longer than 200 km) are associated with strong frontogenesis (Novak

and Colle 2012). Multibands (sets of snow bands < 200 km) are much more common than

primary bands and can occur in conditions with weak to no frontogenesis (Ganetis et al. 2018).

We did not distinguish between primary and multi-bands in our enhanced reflectivity feature

analysis and rather looked at all local enhancements together. In the near term, we will assess

whether the few samples of high feature area×time and heavy snow rates are mostly occurring

associated with primary bands.
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Appendix A

List of storms

Table A.1: List of storm days between 1996-2023 used in the analysis. Dates are in YYYYMMDD format.

19960102 19960103 19960104 19960107 19960108 19960109 19960110 19960112

19960129 19960131 19960202 19960203 19960208 19960211 19960214 19960216

19960217 19960302 19960305 19960306 19960307 19960308 19960329 19961126

19961127 19961206 19961231 19970109 19970110 19970111 19970124 19970127

19970128 19970131 19970204 19970208 19970214 19970216 19970217 19970303
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19990322 20000113 20000120 20000121 20000125 20000126 20000130 20000131
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20010121 20010127 20010202 20010205 20010206 20010208 20010222 20010223
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20021127 20021202 20021205 20021206 20021211 20021212 20021216 20021225

20021226 20030102 20030103 20030104 20030105 20030106 20030107 20030108

20030109 20030111 20030126 20030127 20030129 20030202 20030207 20030210

20030212 20030216 20030217 20030218 20030306 20030313 20030330 20031205
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Appendix B

Using visibility to estimate snowfall intensity

Previous work from Rasmussen et al. (1999) demonstrates how visibility can be useful

for determining snowfall intensity. In their work, they use observations with a high temporal

frequency that correspond well to the precipitation rate observations. We had hoped to use the

hourly visibility observations from the ASOS stations to refine our precipitation rate definitions.

In practice, with the hourly observations, a relationship is less established. This is likely due to

the fact that the hourly precipitation observations are time-integrated, whereas the visibility

observations are only observed at the top of the hour and are not necessarily representative of

the conditions over the whole hour. There are cases where there is a clear relationship between

visibility and snow rate (Fig. B.1), but there are also examples where the relationship is more

complicated (Fig. B.2). Density plots of visibility and precipitation rate over multiple events and

stations indicate that there is not a clear relationship for these observations (Fig. B.3). Based

on this analysis, we decided to not use visibility as a proxy for snowfall intensity.
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Figure B.1: Two time series of visibility (navy line) and liquid equivalent precipitation rate (points
as in legend) from ASOS stations in Lehigh County, PA (KABE; top) and Lebanon, NH (KLEB; bottom)
between 16 December 2020 00:00 UTC and 18 December 2020 00:00 UTC. These two examples show a
strong relationship between decreased visibility and increased precipitation rate.
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Figure B.2: Two time series of visibility (navy line) and liquid equivalent precipitation rate (points as in
legend) from ASOS stations in Scranton, PA (KAVP; top) and Portland, ME (KPWM; bottom) between 26
January 2021 00:00 UTC and 28 January 2021 00:00 UTC. These two examples show a weak relationship
between decreased visibility and increased precipitation rate.
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Figure B.3: Density plot of visibility and liquid equivalent precipitation rate from 29 ASOS stations
during 7 events in the Northeast US.
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