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Abstract

People, animals, and plants experience air temperature on an hourly basis. Hourly data can be
mined to derive information that is more easily related to lived experiences in comparison to
incremental changes to seasonal averages. We analyze hourly weather station data obtained from
NOAA’s Integrated Surface Dataset for 340 stations in the contiguous United States and southern
Canada from 1978 to 2023. For each station, we compute linear regression trends in the change per
decade in hours below 0◦C (32◦F), hours above 30◦C (86◦F), and energy usage in terms of heating
and cooling degree hours. Many locations in southern Canada and the north central US lack clear
decadal trends in hours above 30◦C (86◦F) and below 0◦C (32◦F). Most locations east of the
Mississippi River and north of 37◦ latitude have lost the equivalent of ∼1.5 to 2 weeks per year of
temperatures below freezing compared to the early 1980s. The largest gains in the number of hours
above 30◦C (86◦F) are concentrated in the southwestern US and parts of Texas. For most locations
in the northern portions of the US, the rate at which heating degree hours are lost outpaces the rate
at which cooling degree hours are gained suggesting a net yearly energy demand reduction.

Introduction 1

Scientific evidence overwhelmingly supports the existence of anthropogenic climate change. Studies 2

such as the Intergovernmental Panel on Climate Change (IPCC) Synthesis Report [1, 2] and the 3

Fifth National Climate Assessment [3] have extensively documented evidence for long-term changes 4

to the climate system based upon historical weather observations. Often these analyses communicate 5

trends in terms of cumulative changes over time that are derived from daily values [4]. Examples 6

from the Fifth National Climate Assessment include the long term changes in annual and seasonal 7

average temperatures as well as the change in the number of hot days, cold days, and warm nights in 8

the contiguous United States (CONUS) since the early 1900s [3]. 9

While information based on daily metrics is useful and informative, it does not capture the full 10

story. Daily statistics do not convey the instantaneous and time-integrated impacts of weather. A 11

maximum temperature of 30◦C (86◦F) recorded for six hours over the course of a day will have 12

substantially different impacts on people, animals, plants, and buildings compared to the same 13

maximum temperature recorded for only one hour of a day. The onset of precipitation can 14

dramatically impact air temperature conditions and can be resolved by hourly data. In addition to 15

precipitation, hour-by-hour timing of cloudiness and air mass movements also modify hourly surface 16

air temperatures (e.g., Fig. 1). Consecutive days often have different temperature variations, and 17
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Fig 1. Hourly temperature time series for LaGuardia Airport (KLGA) from July 23, 2023 through
July 26, 2023. Vertical lines at midnight local time. The hours at or above 86◦F for each day
correspond to 2, 0, 2, and 5 hours respectively. During the mid-afternoon on July 26, a cold front
and afternoon thunderstorms yielded sudden cooling of air temperatures from 86◦F to ∼71◦F which
persisted until after sunrise the next day.

thus, have different impacts. An afternoon shower at 2:00 PM, such as on July 25, 2023 at 18

LaGuardia Airport, will have more of an impact on energy usage than the same storm if it had 19

occurred at 9:00 PM (Fig. 1). 20

We use the National Centers for Environmental Information’s (NCEI) Integrated Surface 21

Database Lite (ISD-Lite) quality-controlled hourly surface weather observation data from 1978 to 22

2023 for locations across CONUS and southern Canada [5, 6]. Analysis of hourly temperature 23

variations improves the ability to resolve and analyze the impacts of weather and climate change 24

that cannot be captured by daily mean or daily minimum and maximum values [7, 8]. This is 25

particularly important with regards to heat stress as the frequency of life-threatening heat waves is 26

expected to increase in most climate change scenarios [9]. Trends and variability of hourly 27

temperature data in terms of heating degree hours and cooling degree hours is a pertinent input for 28

forecasting future regional energy demand [10–12]. 29

Our goal is to provide information that can motivate climate adaptation steps by individuals and 30

businesses that is tailored for local and regional areas. It is often easier to convince someone of the 31

necessity for action when information is related to their lived experiences [13,14]. To this end, we 32

focus on hours above and below particular temperature thresholds. We have selected thresholds 33

related to the freezing point, heat stress, and energy usage. These temperature thresholds have clear 34

impacts on day-to-day life. Whether the air temperature is above or below freezing is an important 35

bifurcation in weather processes as it determines whether there is dew versus frost or rain versus 36

snow. Freeze-thaw cycles are a major source of wear on roads and outdoor infrastructure [15]. A 37

temperature of 30◦C (86◦F) is when people start to feel heat stress [16]. It is also a threshold for 38
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heat stress impacts on crops and domestic cattle [16–20]. Heating and cooling degree hours are 39

based on a deviations from 18◦C (65◦F) and weighted by estimated energy usage. Our findings for 40

temperature thresholds complement traditional methods of reporting climate changes in terms of 41

deviations from long-term averages and the probabilities of extreme events [1, 3]. 42

Science communicators need to continue experimenting with and refining concepts that can help 43

engage diverse audiences with respect to climate change awareness and impacts [21,22]. We believe 44

that distilling results from hourly historical observations have the potential to function as a useful 45

climate change communication tool. 46

Data and Methods 47

Hourly air temperature data is analyzed for the 46-year period from 1978 to 2023. While some 48

weather stations have recorded hourly observations back to the 1940s, archival of hourly air 49

temperatures did not become routine across the US and Canadian operational networks until the 50

late 1970s. The ISD-Lite database is a derived product representing a subset of information included 51

in the full Integrated Surface Database (ISD) provided by the NCEI [5, 6]. The ISD contains a 52

variety of combined surface hourly datasets from across the world. The observations are distilled into 53

a structured attribute table after undergoing NCEI’s standardized quality control methods. Air 54

temperature is one of the parameters validated most extensively in the ISD data sets [6]. The 55

ISD-Lite version is designed primarily for general research purposes and omits complicated flags and 56

special observations that are part of the full ISD data set. 57

Airport Weather Station Data 58

All sites used for analysis correspond to the locations of airports. In the ISD and ISD-Lite system, 59

each station is characterized using multiple different identifiers such as the United States Air Force 60

ID (USAF), Weather Bureau Army Navy ID (WBAN), and the International Civil Aviation 61

Organisation ID (ICAO). In some cases, a single ICAO identifier may be associated with more than 62

one USAF and/or WBAN identifier in the ISD-Lite dataset. If a station is moved within an airport’s 63

grounds or upgraded, the USAF and WBAN identifiers may change while the ICAO identifier does 64

not. This irregularity yields a set of encoded stations for the same ICAO corresponding to different 65

time spans. In these cases, we verify the encoded stations with the same ICAO are within 0.03 of a 66

degree latitude and degree longitude (∼3 km) of each other. We concatenate the data from these 67

stations together in order to build the airport’s complete historical hourly observation dataset from 68

1978 to 2023. In rare cases—likely due to a weather station being replaced—periods of overlap can 69

exist in the historical record between encoded stations of the same ICAO. We resolve any instances 70

of duplicate observations by giving priority to the encoded stations that have the most recent 71

observations available. In addition to the location requirements of the encoded stations discussed 72

above, several addition criteria are applied to select the set of stations used in this study. Locations 73

must contain a country code ’US’ or ’CA’, a latitude value less than 51◦N, recorded hourly data 74

dating back to at least 1978, and current records of hourly observations in 2023. 75

For the ISD-Lite dataset, air temperature measurements for CONUS are encoded in whole 76

degrees Fahrenheit which we then convert to the nearest tenth of a degree Celsius. The encoded 77

resolution of the air temperature observations for the stations in Canada as well as the majority of 78

stations across the world are in whole degrees Celsius. For this analysis, all air temperature 79

observations are binned to the nearest whole degree Celsius. While this process may lead to a slight 80

quantization error, the difference is assumed to be negligible relative to the climatological trends of 81

interest. Conversion to the Celsius scale for the US stations facilitates coherence between the 82

analysis of the CONUS stations and the rest of the world. For each location and each year, the air 83

temperature observations are aggregated into a frequency distribution with 1-degree Celsius bins. 84

Example frequency distributions of air temperature for each year over the 46-year study period are 85

shown in Figure 2 for both LaGuardia Airport (KLGA) in New York City and Ottawa International 86
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Fig 2. Hourly temperature distributions by year for (left) LaGuardia Airport (KLGA), New York,
USA and (right) Ottawa International Airport (CYOW), Ontario, Canada for each year from
1978-2023. For visualization purposes, the temperature bins for each station are shown in the units
in which they are recorded (◦F for KLGA and ◦C for CYOW). To facilitate comparisons across the
figure, the Y-axis temperature scales are lined up such that the maximum and minimum
temperatures align (104◦F = 40◦C and -31◦F = -35◦C).

Airport (CYOW) in Ottawa, Ontario. As expected, due to its higher latitude and inland continental 87

climate, the distribution is shifted to colder temperatures and there is a longer tail of very low 88

temperatures for Ottawa as compared to coastal New York City. 89

A station’s overall quantity of hourly data is evaluated in order to minimize the impact of 90

missing data. Each year within a station record is independently evaluated. As a part of this 91

process, observations from all leap days (29 February) are removed. If data for a particular year does 92

not have ≥ 7500 hourly observations of the total possible 8670 hours, that year’s data is discarded 93

completely as this can skew results depending on whether or not large chunks of time within a given 94

year are missing. If three or more years are consecutively discarded, the station will be excluded 95

from the list of stations to be used in the study. A station will also be excluded if 13 or more years 96

are discarded from the 46-year period (1978-2023). These protocols aim to preserve both the 97

reliability and temporal continuity of trends. 98

We checked if each station had any extreme abnormalities or abrupt shifts within the 99

temperature record. The only location removed for these problems was the airport CYMX from 100

Montréal, Quebec, as it displayed a major, uncharacteristic shift in reporting values in 2005. Out of 101

the 998 potential airports in the CONUS and southern Canada geographic region, 340 stations met 102

the filtering standards required in order to be included in the analysis. 103

Metrics Examined 104

We investigate how the number of hours below 0◦C (32◦F) and above 30◦C (86◦F) each year has 105

varied between 1978 and 2023 and if there are consistent and notable trends. We use heating degree 106

hours and cooling degree hours as a metric related to energy usage. Daily minimum, maximum, and 107

average air temperature data have been frequently used as a proxy for energy usage in the form of 108

heating degree days and cooling degree days [23]. A heating degree day corresponds to the energy 109

needed to heat a building to a particular base temperature, while a cooling degree day pertains to 110

the energy needed to cool a building to a particular base temperature. Representations of higher 111

temporal resolution, such as heating degree hours and cooling degree hours, can be calculated in a 112

manner similar to degree day values. Degree day values are often based on mean daily air 113

temperatures and have been found to almost always underestimate the degree hour measurements 114

computed directly from hourly data [24, 25]. We use a base temperature (B) of 18◦C (65◦F) for our 115

degree hour calculations as this is the widely accepted value used in other regional studies [26]. For 116
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each station, heating degree hours and cooling degree hours are directly calculated for each hourly 117

observation in the time period. Following the methods of Guttman and Lehman (1992), for an air 118

temperature measurement T with base temperature B, the cooling degree hours CDH and heating 119

degree hours HDH for any particular hourly observation i are calculated as follows: 120

CDHi =

{
Ti −B Ti > B
0 Ti ≤ B

HDHi =

{
B − Ti Ti < B
0 Ti ≥ B

Metrics are calculated for each station independently and then regional geographic consistency is 121

used as a check on the representativeness of the results. It may be the case that land-use changes 122

over the decades at and near an individual airport can yield results at a particular location that are 123

not consistent with other locations in the region. 124

Utilizing Linear Regression 125

Over spans of a few decades, linear trends provide a useful approximation of the observed 126

temperature changes at a given location [27–29]. The linear trends are not designed to capture 127

nonlinear behaviors. The quantitative values of the computed trends are closely tied to the specific 128

observation period from 1978 to 2023. 129

The number of hours below 0◦C (32◦F) and above 30◦C (86◦F) as well as the number of heating 130

degree hours and cooling degree hours are counted for each individual year. We then fit a modeled 131

linear regression to each metric individually for each station to depict the 46-year trends (e.g. Fig. 132

3). Linear trends are represented for air temperature thresholds in terms of hours per decade and for 133

both degree hours metrics in terms of degree hours per decade. Stations that have a median of 134

≤10 hours per year meeting the threshold criteria are designated as having ”insufficient threshold 135

hours” and a trend is not computed. 136

For each metric, the residual standard deviation, a measure of goodness of fit of the linear 137

regression model, is used as a proxy for interannual variability. A greater residual standard deviation 138

intuitively implies a greater range of threshold hours or degree hours observations across the time 139

range relative to the linear regression model. We chose this strategy as opposed to calculating the 140

variance of each sample set directly because the vast majority of observed distributions do not have 141

Gaussian distributions.The residual standard deviation values are independently assessed for each air 142

temperature threshold and degree hour metric and are not normalized. 143

Statistical Testing to Determine Trend Significance and Variability 144

We examine if the magnitude of the linear trend is large enough to be notable in the sense that the 145

observed trend is unlikely to have occurred by chance. We apply a permutation test (also known as 146

a randomization test or form of Monte Carlo test) in order to assess the significance of the linear 147

regression trend. Permutation tests have been commonly used as a method of statistical hypothesis 148

testing that can be adapted for a variety of experimental applications [30–33]. We follow established 149

methods for permutation testing [31,32]. The null hypothesis is that the linear regression trend in 150

hours per decade calculated is attributable to random variation of the observed distribution over 151

time. The distribution is permuted by shuffling the samples of the observed dataset without 152

replacement, representing a different arrangement of the original sample of observations [31]. The 153

test statistic, the linear regression trend, is then calculated for each permutation. This process is 154

repeated to generate 10,000 permutations of the potential 46! combinations possible in order to 155

compile the permutation distribution of potential trend magnitudes. The observed test statistic is 156

then compared to the distribution of permutation tests. The null hypothesis is rejected, and the 157

trend is marked significant if the observed trend falls within either extreme 5th percentile of the 158

permutation distribution (standard two-tailed p-value of less than or equal to .05). Based upon the 159
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Fig 3. (top left) The number of observations below 0◦C (32◦F) and (top right) above 30◦C (86◦F),
along with (bottom left) the counts of heating degree hours and (bottom right) cooling degree hours,
for LaGuardia Airport (KLGA), New York from 1978 to 2023. A linear regression model is used to
depict the overall long-term changes for each metric. For KLGA, the linear fit equates to a loss of
about 18.5 days (446 hours) worth of below freezing temperatures and gain of about 5 days worth of
temperatures above 30◦C (86◦F) between 1978 and 2023. The residual standard deviation describes
the year to year variability of each metric.
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Fig 4. (top left) The number of observations below 0◦C (32◦F) and (top right) above 30◦C (86◦F),
along with (bottom left) the counts of heating degree hours and (bottom right) cooling degree hours,
for Pierre Regional Airport (KPIR), South Dakota from 1978 to 2023. A linear regression model is
used to depict the overall long-term changes for each metric. The residual standard deviation
describes the year to year variability of each metric. Despite demonstrating non-zero trend
magnitudes particularly in the winter season, these trends are insignificant due to the overall high
variability.

46 observations in each station sample, the .05 threshold would be classified as a fair significance for 160

this sample size [34]. By this criteria, the metrics illustrated for LaGuardia Airport (KLGA) in 161

Figure 3 are all statistically significant trends. In comparison, the trends for Pierre (KPIR) in South 162

Dakota (e.g. Fig. 4) are not significant despite illustrating nonzero magnitudes. 163

There are a multitude of advantages that support the use of the permutation test for our specific 164

application. This test makes no assumptions regarding the underlying population distribution of the 165

data when producing samples or evaluating the trend statistic [31,32]. The occasional presence of 166

outliers in the sample distributions is mitigated in their impact relative to the statistic being tested 167

under the methodology of the permutation test [30,31]. Furthermore, permutation tests have the 168

ability to yield powerful statistical results for small sample sizes which applies to the 46-year time 169

range analyzed [30,33]. Under the null hypothesis stated, the shuffling component assumes that any 170

observation from the distribution can randomly take place during any year between 1978 and 2023. 171

While randomness is not characteristic of actual air temperature time series that include year-to-year 172

dependencies based on short-term internal climate variability [35–38], the permutation test 173

adequately serves the purpose of testing the significance of the simplified linear regression trend. 174

Information on year-to-year variability is extremely relevant for climate change adaptation as 175

more variable historical conditions make it more difficult to anticipate near future conditions. We 176

can obtain information on the nature of variability for each station by examining the relationship 177

June 30, 2025 7/18



between trend magnitudes and residual standard deviation (Fig. 5). 178

Smaller residual standard deviations imply better linear trend fits as compared to higher residual 179

standard deviations. For the stations with significant trends, the variability is “more organized” 180

along the trend line. Larger magnitude trends tend to be associated with higher variability as 181

measured by the residual standard deviation (orange dots in Fig. 5). Some stations categorized with 182

insignificant trends by the permutation test have weak trends with high variability, while others have 183

weak trends with low variability (black dots in Fig. 5). Stations with insignificant trends and with a 184

residual standard deviation greater than or equal to the median are classified as “high variability,” 185

and those with a residual standard deviation less than the median are classified as “low variability”. 186

Stations marked insignificant with low variability are likely to exhibit a weak trend magnitude. 187

An insignificant trend with high variability may or may not imply any changes over time (black 188

dots in Fig. 5). For each of the four metrics in Fig. 5), the dividing line between stations marked 189

with a significant trend and those marked with an insignificant trend has an approximate slope of 190

4:1. This is likely dependent in part upon the specific number of observations being shuffled (46 191

years) within the permutation test that marks significance. Hence, the specific stations falling along 192

either side of the geographic borders of insignificant and significant trends will vary slightly 193

depending on the length and specific years of the historical period examined (Figs. 6) and 7). 194

Factors that influence short-term local and regional climate patterns include atmospheric-ocean 195

coupling phenomena such as the El Niño/Southern Oscillation and the North Atlantic Oscillation, 196

solar activity cycles, volcanism, and other types of atmospheric and oceanic variability [35,37,38]. 197

Anthropogenic climate change and land-use and surface cover changes, including urban heat island 198

and ecosystem changes, tend to accumulate and evolve over time. The observed trends derived from 199

the hourly data encompass the combined impacts of these factors. As a consequence, the 200

year-to-year observations within the time series of each metric for each station are not assumed to be 201

independent of one another. Some details of weather station siting may yield large discrepancies 202

among geographically adjacent locations. We emphasize the more robust findings that have regional 203

geographic coherence. 204

Results 205

Threshold Temperature Trends and Variability 206

Information on where there are significant trends and where year-to-year variability is high is helpful 207

in understanding how warming climate manifests region by region. Geographic maps of the 208

variability of historical air temperature changes are usually not included in materials aimed at 209

policymakers [3]. Analyses of the 46-year period from 1978 and 2023 are relevant for planning for 210

anticipated changes in next 10-20 year time frame [39]. 211

In the winter season, large negative trends in hours below 0◦C (32◦F) are clustered in the 212

northeastern portion CONUS (Fig. 6). For locations in east of the Mississippi River and north of 213

37◦ latitude, these trends correspond with a decrease of about one and a half to two weeks worth of 214

hours below freezing since the early 1980s. West of ∼93◦W, most locations in Minnesota, Iowa, 215

North Dakota, South Dakota, Montana, Wyoming, and Washington and the southern Canada have 216

high year to year variability without a significant trend. As expected, there are smaller losses in 217

number of hours below 0◦C in the southern US states as compared to more northern locations since 218

there are fewer hours ≤ 0◦C (32◦F) in southern locations overall. 219

In the summer season, almost all locations west of the Rocky Mountains have significant positive 220

trends in the hours above 30◦C (86◦F) (Fig. 6). The highest magnitude summer warming trends are 221

in southern California, Nevada, Arizona, New Mexico, Texas, Louisiana and Florida. In these 222

locations, the occurrence of temperatures above 30◦C (86◦F) increased by about 1.5 weeks worth of 223

hours since the late 1970s. Many stations in the central US (Nebraska, Kansas, Missouri, Illinois, 224

Indiana, Oklahoma, and Arkansas) indicate high variability and no significant trends in hours 225

≥30◦C. 226
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Fig 5. Trend magnitude and residual standard deviation for stations with significant trends (orange
dots) and with insignificant trends (black dots) as determined by the permutation test. Median
residual standard deviation shown by red line in each panel. (top left) Hours below freezing, (top
right) Hours above 30◦C, (bottom left) Heating degree hours, (bottom right) Cooling degree hours.
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Fig 6. Changes in (top) the number of hours below 0◦C (32◦F) and (bottom) number of hours above
30◦C (86◦F) from 1978-2023 for 341 airports across CONUS and southern Canada. Statistically
significant trends in units of hours per decade (colored circles). Trends representing warming are
denoted in shades of red and orange for both maps. Stations without significant trends are divided
into categories of high variability (residual standard deviation ≥ median residual standard deviation)
or low variability (residual standard deviation < median residual standard deviation). Stations with
insufficient threshold hours passed all filtering procedures but have a median of less than 10
threshold hours each year for the corresponding metric across the 46 year period.
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Heating Degree Hours and Cooling Degree Hours 227

The regional analyses of both degree hour variables (Fig. 7) complement the findings illustrated in 228

the air temperature threshold maps (Fig. 6). Apart from the midwestern United States, an 229

overwhelming majority of stations have significant decreases in heating degree hours (proxy for 230

decreasing energy usage trends in the winter) and increases in cooling degree hours (proxy for 231

increasing energy usage trends in the summer). Heating degree hours and cooling degree hours relate 232

to likely changes in the relative energy use not accounting for any changes in technology, insulation, 233

and building codes. The greatest decreases in the amount of heating degree hours in the winter have 234

occurred in states in the mid-Atlantic and south of the Great Lakes. 235

The greatest increases in cooling degree hours in the summer have occurred in the states of 236

Florida and Louisiana, southeastern Texas, and portions of the southwest. In summer, locations near 237

the geographic center of CONUS (esp. Oklahoma, Kansas, Nebraska, South Dakota) often have high 238

variability in cooling degree hours without significant trends. 239

Winter warming often offsets summer warming in terms of the degree hour energy use proxy (Fig. 240

8). The 185 stations that have both significant heating and cooling degree hour trends are divided 241

into four quadrants using their position relative to 37◦ latitude and -98◦ longitude. For all stations 242

in the Northwest and most in the Northeast, the reduction in heating degree hours in winter is 243

outpacing the the increase in cooling degree hours in summer (Fig. 8). This also holds true for 244

approximately half of all stations in the southern half of CONUS. In winter, locations with high 245

variability in heating degree hours without significant trends occur in southern Canada, Montana, 246

Wyoming, and the Dakotas and in high-altitude locations in western states. 247

Conclusions 248

Analysis of CONUS and southern Canada historical hourly weather station observations from 1978 249

to 2023 reveals the variability and trends of the impacts of recent climate changes. Hourly data 250

provides a higher degree of granularity that can support analyses of temporal and diurnal variations 251

that daily data cannot provide. We examine several societal relevant metrics based on hourly 252

temperature data: hours below 0◦C, hours above 30◦C, heating degree hours, and cooling degree 253

hours. We calculate trends based on linear regression and assess their significance based on a 254

permutation test. Where decadal statistics show spatially consistent values among nearby stations, it 255

increases confidence in the findings. It is simpler to plan and to justify adaptation strategies for 256

locations with clear trends. Stations with low variability and without significant trends experienced 257

small changes in recent decades. Stations with high variability and without significant trends are 258

challenging from adaptation standpoint as it is difficult to anticipate likely near future changes. 259

This detailed hourly analysis complements previous work based on the daily temperature 260

record [1–3]. The key findings of this analysis are: 261

• Many stations in southern Canada and the north central US (North Dakota, South Dakota, 262

Minnesota, Wisconsin, Iowa, and Nebraska) lack clear decadal trends in hours ≤0◦C and 263

≥30◦C. 264

• Most stations east of the Mississippi River (∼92◦W) and north of ∼37◦N latitude have lost the 265

equivalent of ∼1.5 to 2 weeks or more of temperatures lower than freezing. These locations 266

also typically have smaller magnitude trends of warming in summer than in winter. 267

• Many stations in Arizona, New Mexico, and parts of southern Nevada, southern California, and 268

southern Texas have gained the equivalent of ∼1.5 weeks of temperatures higher than 30◦C, a 269

threshold at which agricultural crops and animals start to experience heat stress symptoms. 270

• Nearly all stations in Northeast and Northwest portions of the US have lost more heating 271

degree hours than gained cooling degree hours which suggests a net decrease in annual energy 272

use based on this proxy. 273
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Fig 7. The long term changes in (top) the number of heating degree hours and (bottom) cooling
degree hours from 1978-2023 for 340 airports across CONUS and southern Canada. Statistically
significant regression trends are colored by magnitude in terms of degree hours per decade. Stations
without significant trends are divided into categories of high variability (residual standard deviation
≥ median residual standard deviation) or low variability (residual standard deviation < median
residual standard deviation).
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Fig 8. Trends in heating degree hours compared to trends in cooling degree hours for subset of 213
stations that have both significant heating degree hours and cooling degree hours trends. This subset
of stations is further divided into geographic quadrants separated by 37 deg N latitude and the 98
deg W longitude representing the northeast, northwest, southeast, and southwest regions of the
CONUS and southern Canada study area. For all northwest stations (orange), almost all northeast
stations (green), and half of both southern regions (cyan and pink), the reduction in energy usage
(heating degree hours) in the winter is outpacing the increase in energy usage (cooling degree hours)
in the summer.
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Examination of hourly air temperature data is potentially useful for other societal relevant 274

climate impacts such as shifts in ecological patterns and organism behaviors, changes in snowpack 275

volume, and growing season duration. The sharp decreases in the number of hours below freezing 276

have far ranging implications for ecosystems across the eastern regions of CONUS. Over the past few 277

decades, both snowfall accumulation totals and snowfall depths have decreased in conjunction with 278

warmer winters in the upper Midwest and Northeast [40]. The degree to which insect populations 279

survive the winter is related to both snow pack and temperature changes [41]. The increased length 280

of the growing season by 10 to 20 days in many regions of CONUS is primarily due to an earlier 281

onset of warmer temperatures and a decreased amount of freezing temperatures during the seasonal 282

transition from winter to spring [42]. 283

The urban heat island effect has been shown to locally increase temperatures in and near cities 284

increasing the risks of heat stress and heat related illnesses for those living in urban areas [43,44]. 285

For example, [45] found that the urban heat island around New York City impacts the local 286

mesoscale weather by locally increasing temperatures by ∼4◦C during the summer and ∼3◦C higher 287

during the winter. For weather stations adjacent to nearby cities, it is likely that our four hourly 288

metrics are being impacted in part by the warming induced by urban expansion since 1978 [46]. 289

Local adaptation strategies to decrease the ambient temperatures within and near cities are crucial 290

for limiting heat stress as well as summer season energy costs and need to be tailored for each 291

location [47]. 292

Hourly energy use proxies can illuminate and quantify energy usage variability at a finer time 293

scale compared to daily or seasonal proxies that either do not capture or underestimate these 294

features [24,25]. High year to year variability brings the potential for reserve energy margins to be 295

frequently stretched beyond the anticipated average seasonal peak capacity during long periods of 296

exceptionally high or cold temperatures. 297

Communicating trends as well as variability is crucial for aiding the public’s understanding of 298

climate [48]. A given winter may not always be warmer than the one preceding it. Effective scientific 299

communication strategies can further engage the public with these issues [21,22]. How the human 300

mind processes the temporal aspects of a changing climate differs for shorter versus longer periods of 301

time [49]. Data story telling, and methods that connect with audience personal experiences can help 302

to reframe issues to make them more relevant and actionable [50]. 303

Many people who have lived in a given location for several decades recognize that there are more 304

warm spells in the winter than there used to be. Translating this perception into the equivalent of a 305

lost 1.5 weeks of temperatures below freezing for the northeast US makes makes it more tangible 306

than reporting that average winter season temperatures have increased by 2◦F. Communication of 307

impacts based on hourly data analysis helps to connect lived experience to quantitative values that 308

can be used by policy makers, businesses, and homeowners to justify and to plan climate adaptations 309

such as targeted modifications to infrastructure. We believe that these types of analyzes could serve 310

as part of a science communication strategy to engage the public and decision makers and to 311

motivate pragmatic climate action. 312
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